Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[BUGFIX] Add checks in BatchNorm's infer shape #20415

Merged
merged 2 commits into from
Jul 6, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions src/operator/nn/batch_norm.cc
Original file line number Diff line number Diff line change
Expand Up @@ -375,15 +375,15 @@ static bool BatchNormShape(const nnvm::NodeAttrs& attrs,

const index_t channelCount = dshape[channelAxis];

in_shape->at(batchnorm::kGamma) = mxnet::TShape(Shape1(channelCount));
in_shape->at(batchnorm::kBeta) = mxnet::TShape(Shape1(channelCount));
in_shape->at(batchnorm::kInMovingMean) = mxnet::TShape(Shape1(channelCount)); // kMovingMean
in_shape->at(batchnorm::kInMovingVar) = mxnet::TShape(Shape1(channelCount)); // kMovingVar

out_shape->clear();
out_shape->push_back(dshape); // kOut
out_shape->push_back(Shape1(channelCount)); // kMean
out_shape->push_back(Shape1(channelCount)); // kVar
SHAPE_ASSIGN_CHECK(*in_shape, batchnorm::kGamma, Shape1(channelCount));
SHAPE_ASSIGN_CHECK(*in_shape, batchnorm::kBeta, Shape1(channelCount));
SHAPE_ASSIGN_CHECK(*in_shape, batchnorm::kInMovingMean, Shape1(channelCount)); // kMovingMean
SHAPE_ASSIGN_CHECK(*in_shape, batchnorm::kInMovingVar, Shape1(channelCount)); // kMovingVar


SHAPE_ASSIGN_CHECK(*out_shape, batchnorm::kOut, dshape);
SHAPE_ASSIGN_CHECK(*out_shape, batchnorm::kMean, Shape1(channelCount));
SHAPE_ASSIGN_CHECK(*out_shape, batchnorm::kVar, Shape1(channelCount));

return true;
}
Expand Down
30 changes: 15 additions & 15 deletions src/operator/nn/mkldnn/mkldnn_batch_norm-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -159,10 +159,10 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
if (param.axis != 1 || shape.ndim() != 4) {
// reshape to (N, C, 1, D)
mxnet::TShape new_shape{
static_cast<dim_t>(shape.ProdShape(0, real_axis)),
static_cast<index_t>(shape.ProdShape(0, real_axis)),
shape[real_axis],
1,
static_cast<dim_t>(shape.ProdShape(real_axis + 1,
static_cast<index_t>(shape.ProdShape(real_axis + 1,
static_cast<int>(shape.ndim())))
};
in_data[batchnorm::kData] = in_data[batchnorm::kData].Reshape(new_shape);
Expand Down Expand Up @@ -195,7 +195,7 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const mkldnn::memory &weight_mem = fwd.GetWeight();
float* weight_buf = reinterpret_cast<float *>(weight_mem.get_data_handle());

nnvm::dim_t channels_ = data.shape()[1];
index_t channels_ = data.shape()[1];
CHECK(weight_mem.get_desc().get_size() == channels_ * sizeof(float) * 2);
float* weight_ptr = gamma.data().dptr<float>();
float* bias_ptr = beta.data().dptr<float>();
Expand All @@ -204,13 +204,13 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
memcpy(weight_buf, weight_ptr, copy_size);
memcpy(&weight_buf[channels_], bias_ptr, copy_size);
} else if (IsBNWriting(req[batchnorm::kGamma])) {
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
weight_buf[i] = 1.0f;
weight_ptr[i] = 1.0f;
weight_buf[channels_ + i] = bias_ptr[i]; // bias
}
} else {
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
weight_buf[i] = 1.0f;
weight_buf[channels_ + i] = bias_ptr[i]; // bias
}
Expand All @@ -237,7 +237,7 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
float* inmean = aux_states[batchnorm::kMovingMean].data().dptr<float>();
float* invar = aux_states[batchnorm::kMovingVar].data().dptr<float>();
// to align with origin implmentation: batch_norm.cc: L164
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
omean[i] = inmean[i];
ovar[i] = VARIANCE_TO_INVSTD(invar[i], param.eps);
}
Expand All @@ -254,7 +254,7 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
MKLDNNStream::Get()->Submit();

float* ovar = outVar.data().dptr<float>();
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
ovar[i] = VARIANCE_TO_INVSTD(ovar[i], param.eps);
}
}
Expand Down Expand Up @@ -357,10 +357,10 @@ void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
if (param.axis != 1 || shape.ndim() != 4) {
// reshape to (N, C, 1, D)
mxnet::TShape new_shape{
static_cast<dim_t>(shape.ProdShape(0, real_axis)),
static_cast<index_t>(shape.ProdShape(0, real_axis)),
shape[real_axis],
1,
static_cast<dim_t>(shape.ProdShape(real_axis + 1,
static_cast<index_t>(shape.ProdShape(real_axis + 1,
static_cast<int>(shape.ndim())))
};
data = data.Reshape(new_shape);
Expand All @@ -384,15 +384,15 @@ void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const NDArray &gamma = in_data[batchnorm::kGamma];
const NDArray &beta = in_data[batchnorm::kBeta];
DType *weight_buf = reinterpret_cast<DType *>(bwd.GetWeight().get_data_handle());
nnvm::dim_t channels_ = data.shape()[1];
index_t channels_ = data.shape()[1];
DType *weight_ptr = gamma.data().dptr<DType>();
DType* bias_ptr = beta.data().dptr<DType>();
const size_t copy_size = sizeof(DType) * channels_;
if (!param.fix_gamma) {
memcpy(weight_buf, weight_ptr, copy_size);
memcpy(&weight_buf[channels_], bias_ptr, copy_size);
} else {
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
weight_buf[i] = static_cast<DType>(1.0f);
}
memcpy(&weight_buf[channels_], bias_ptr, copy_size);
Expand Down Expand Up @@ -422,7 +422,7 @@ void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
DType *tmp_var_ptr = reinterpret_cast<DType *>(var_mem.get_data_handle());

DType minus_mom = (1.0f - param.momentum);
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
moving_mean_ptr[i] = moving_mean_ptr[i] * param.momentum +
out_mean_ptr[i] * minus_mom;
float variance = INVSTD_TO_VARIANCE(out_var_ptr[i], param.eps);
Expand Down Expand Up @@ -451,13 +451,13 @@ void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
if (req[batchnorm::kGamma] != kAddTo) {
memcpy(w_grad_1, gw_buf, copy_size);
} else {
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
w_grad_1[i] += gw_buf[i];
}
}
}
} else {
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
(in_grad[1].data().dptr<DType>())[i] = 0.0f;
}
}
Expand All @@ -468,7 +468,7 @@ void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
memcpy(w_grad_2, &gw_buf[channels_], copy_size);
} else {
DType *grad_beta = &gw_buf[channels_];
for (int i = 0; i < channels_; i++) {
for (index_t i = 0; i < channels_; i++) {
w_grad_2[i] += grad_beta[i];
}
}
Expand Down