Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.9.x] Fix issue with even number of channels in BatchNorm #20927

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions src/operator/contrib/batch_norm_relu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -138,12 +138,13 @@ void BatchNormWithReLUComputeExCPU(const nnvm::NodeAttrs &attrs,
const std::vector<NDArray> &outputs) {
CHECK_EQ(inputs.size(), 5U);
const BatchNormParam &param = nnvm::get<BatchNormParam>(attrs.parsed);
bool fuse_relu = true;

if (SupportMKLDNNBNReLU(inputs[0], param)) {
CHECK_GT(outputs.size(), 3U);
MKLDNN_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
MKLDNN_REAL_TYPE_SWITCH(inputs[0].dtype(), DTYPE, {
MKLDNNBatchNormForward<DTYPE>(attrs, ctx, inputs, req, outputs, fuse_relu);
MKLDNNRun(MKLDNNBatchNormForward<DTYPE, /*fuse_relu*/ true>, attrs, ctx,
inputs, req, outputs);
});
return;
}
Expand All @@ -156,11 +157,12 @@ void BatchNormWithReLUGradComputeExCPU(const nnvm::NodeAttrs &attrs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
const BatchNormParam &param = nnvm::get<BatchNormParam>(attrs.parsed);
bool fuse_relu = true;

if (SupportMKLDNNBNReLU(inputs[0], param)) {
CHECK_EQ(inputs.size(), 9U);
MKLDNN_OPCHECK_INIT(true, outputs.size(), inputs, outputs);
MKLDNNBatchNormBackward<float>(attrs, ctx, inputs, req, outputs, fuse_relu);
MKLDNNRun(MKLDNNBatchNormBackward<float, /*fuse_relu*/ true>, attrs, ctx,
inputs, req, outputs);
return;
}
LOG(FATAL) << "BatchNormWithReLU operator only supports MKL-DNN Backend.";
Expand Down
10 changes: 6 additions & 4 deletions src/operator/nn/batch_norm.cc
Original file line number Diff line number Diff line change
Expand Up @@ -452,11 +452,12 @@ void BatchNormComputeExCPU(const nnvm::NodeAttrs &attrs,
const std::vector<NDArray> &outputs) {
CHECK_EQ(inputs.size(), 5U);
const BatchNormParam &param = nnvm::get<BatchNormParam>(attrs.parsed);
bool fuse_relu = false;

if (SupportMKLDNNBN(inputs[0], param)) {
MKLDNN_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
MKLDNN_REAL_TYPE_SWITCH(inputs[0].dtype(), DTYPE, {
MKLDNNBatchNormForward<DTYPE>(attrs, ctx, inputs, req, outputs, fuse_relu);
MKLDNNRun(MKLDNNBatchNormForward<DTYPE, /*fuse_relu*/ false>, attrs, ctx,
inputs, req, outputs);
});
MKLDNN_OPCHECK_RUN(BatchNormCompute<cpu>, attrs, ctx, inputs, req, outputs);
return;
Expand All @@ -470,10 +471,11 @@ void BatchNormGradComputeExCPU(const nnvm::NodeAttrs &attrs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
const BatchNormParam &param = nnvm::get<BatchNormParam>(attrs.parsed);
bool fuse_relu = false;

if (SupportMKLDNNBN(inputs[0], param)) {
MKLDNN_OPCHECK_INIT(true, outputs.size(), inputs, outputs);
MKLDNNBatchNormBackward<float>(attrs, ctx, inputs, req, outputs, fuse_relu);
MKLDNNRun(MKLDNNBatchNormBackward<float, /*fuse_relu*/ false>, attrs, ctx,
inputs, req, outputs);
MKLDNN_OPCHECK_RUN(BatchNormGradCompute<cpu>, attrs, ctx, inputs, req, outputs);
return;
}
Expand Down
36 changes: 30 additions & 6 deletions src/operator/nn/mkldnn/mkldnn_batch_norm-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -146,9 +146,12 @@ static MKLDNNBNForward &GetBNForward(const BatchNormParam& param,
}

template <typename DType>
void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<NDArray> &inputs, const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs, bool fuse_relu) {
void MKLDNNBatchNormForwardImpl(const nnvm::NodeAttrs &attrs,
const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs,
bool fuse_relu) {
const BatchNormParam &param = nnvm::get<BatchNormParam>(attrs.parsed);
std::vector<NDArray> in_data(inputs.begin(), inputs.begin() + batchnorm::kInMovingMean);

Expand Down Expand Up @@ -263,6 +266,15 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
}
}

template <typename DType, bool fuse_relu>
void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
MKLDNNBatchNormForwardImpl<DType>(attrs, ctx, inputs, req, outputs,
fuse_relu);
}

class MKLDNNBNBackward {
std::shared_ptr<mkldnn::batch_normalization_backward> bwd;
const std::shared_ptr<mkldnn::memory> weight_m;
Expand Down Expand Up @@ -310,9 +322,12 @@ static MKLDNNBNBackward &GetBNBackward(
}

template <typename DType>
void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<NDArray> &inputs, const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs, bool fuse_relu) {
void MKLDNNBatchNormBackwardImpl(const nnvm::NodeAttrs &attrs,
const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs,
bool fuse_relu) {
if (fuse_relu) {
CHECK_EQ(inputs.size(), 9U);
} else {
Expand Down Expand Up @@ -477,6 +492,15 @@ void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
LOG(FATAL) << "MKLDNN batch normalization backward: should not reach here ...";
}
}

template <typename DType, bool fuse_relu>
void MKLDNNBatchNormBackward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
MKLDNNBatchNormBackwardImpl<DType>(attrs, ctx, inputs, req, outputs,
fuse_relu);
}
} // namespace op
} // namespace mxnet
#endif // MXNET_USE_MKLDNN
Expand Down