Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MXNET-50] Scala Inference APIs #9678

Merged
merged 19 commits into from
Mar 16, 2018
Merged
Show file tree
Hide file tree
Changes from 17 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions scala-package/core/src/main/scala/ml/dmlc/mxnet/IO.scala
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,10 @@ abstract class DataPack() extends Iterable[DataBatch] {
// Named data desc description contains name, shape, type and other extended attributes.
case class DataDesc(name: String, shape: Shape,
dtype: DType = Base.MX_REAL_TYPE, layout: String = "NCHW") {
require(shape.length == layout.length, ("number of dimensions in shape :%d with" +
" shape: %s should match the length of the layout: %d with layout: %s").
format(shape.length, shape.toString, layout.length, layout))

override def toString(): String = {
s"DataDesc[$name,$shape,$dtype,$layout]"
}
Expand Down
31 changes: 15 additions & 16 deletions scala-package/core/src/test/scala/ml/dmlc/mxnet/ModuleSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@ import ml.dmlc.mxnet.CheckUtils._
import ml.dmlc.mxnet.module._
import ml.dmlc.mxnet.optimizer._
import ml.dmlc.mxnet.io._

class ModuleSuite extends FunSuite with BeforeAndAfterAll {
test ("model dtype") {
val dType = DType.Float16
Expand Down Expand Up @@ -55,9 +54,9 @@ class ModuleSuite extends FunSuite with BeforeAndAfterAll {
val mod = new Module(c, IndexedSeq("b", "c", "a"), null,
contexts = Array(Context.cpu(0), Context.cpu(1)))
mod.bind(dataShapes = IndexedSeq(
DataDesc("b", Shape(5, 5)),
DataDesc("c", Shape(5, 5)),
DataDesc("a", Shape(5, 5))),
DataDesc("b", Shape(5, 5), layout = "NT"),
DataDesc("c", Shape(5, 5), layout = "NT"),
DataDesc("a", Shape(5, 5), layout = "NT")),
inputsNeedGrad = true
)
mod.initParams()
Expand Down Expand Up @@ -108,29 +107,29 @@ class ModuleSuite extends FunSuite with BeforeAndAfterAll {

// single device
var mod = new Module(sym, IndexedSeq("data"), null)
mod.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10))))
mod.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10), layout = "NT")))
mod.initParams()
mod.initOptimizer(optimizer = new SGD(learningRate = 0.1f, momentum = 0.9f))
mod.update()
mod.saveCheckpoint("test", 0, saveOptStates = true)

var mod2 = Module.loadCheckpoint("test", 0, loadOptimizerStates = true)
mod2.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10))))
mod2.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10), layout = "NT")))
mod2.initOptimizer(optimizer = new SGD(learningRate = 0.1f, momentum = 0.9f))
assert(mod.getSymbol.toJson == mod2.getSymbol.toJson)
mapEqu(mod.getParams._1, mod2.getParams._1)

// multi device
mod = new Module(sym, IndexedSeq("data"), null,
contexts = Array(Context.cpu(0), Context.cpu(1)))
mod.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10))))
mod.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10), layout = "NT" )))
mod.initParams()
mod.initOptimizer(optimizer = new SGD(learningRate = 0.1f, momentum = 0.9f))
mod.update()
mod.saveCheckpoint("test", 0, saveOptStates = true)

mod2 = Module.loadCheckpoint("test", 0, loadOptimizerStates = true)
mod2.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10))))
mod2.bind(dataShapes = IndexedSeq(DataDesc("data", Shape(10, 10), layout = "NT")))
mod2.initOptimizer(optimizer = new SGD(learningRate = 0.1f, momentum = 0.9f))
assert(mod.getSymbol.toJson == mod2.getSymbol.toJson)
mapEqu(mod.getParams._1, mod2.getParams._1)
Expand All @@ -143,7 +142,7 @@ class ModuleSuite extends FunSuite with BeforeAndAfterAll {
var dShape = Shape(7, 20)
val mod = new Module(sym, IndexedSeq("data"), null,
contexts = Array(Context.cpu(0), Context.cpu(1)))
mod.bind(dataShapes = IndexedSeq(DataDesc("data", dShape)))
mod.bind(dataShapes = IndexedSeq(DataDesc("data", dShape, layout = "NT")))
mod.initParams()
mod.initOptimizer(optimizer = new SGD(learningRate = 1f))

Expand All @@ -156,7 +155,7 @@ class ModuleSuite extends FunSuite with BeforeAndAfterAll {
assert(mod.getParams._1("fc_bias").toArray.forall(_ == -1f))

dShape = Shape(14, 20)
mod.reshape(IndexedSeq(DataDesc("data", dShape)))
mod.reshape(IndexedSeq(DataDesc("data", dShape, layout = "NT")))
mod.forward(new DataBatch(
data = IndexedSeq(NDArray.ones(dShape)),
label = null, index = null, pad = 0))
Expand All @@ -167,8 +166,8 @@ class ModuleSuite extends FunSuite with BeforeAndAfterAll {
}

test ("module setParams") {
val data = NDArray.array(Array(0.05f, 0.1f), Shape(1, 2))
val label = NDArray.array(Array(0.01f, 0.99f), Shape(1, 2))
val data = NDArray.array(Array(0.05f, 0.1f), Shape(1, 1, 1, 2))
val label = NDArray.array(Array(0.01f, 0.99f), Shape(1, 1, 1, 2))
val trainData = new NDArrayIter(
IndexedSeq(data), IndexedSeq(label), labelName = "softmax_label")

Expand Down Expand Up @@ -217,8 +216,8 @@ class ModuleSuite extends FunSuite with BeforeAndAfterAll {

test ("monitor") {
// data iter
val data = NDArray.array(Array(0.05f, 0.1f), Shape(1, 2))
val label = NDArray.array(Array(0.01f, 0.99f), Shape(1, 2))
val data = NDArray.array(Array(0.05f, 0.1f), Shape(1, 1, 1, 2))
val label = NDArray.array(Array(0.01f, 0.99f), Shape(1, 1, 1, 2))
val trainData = new NDArrayIter(
IndexedSeq(data), IndexedSeq(label), labelName = "softmax_label")

Expand Down Expand Up @@ -295,8 +294,8 @@ class ModuleSuite extends FunSuite with BeforeAndAfterAll {

val mod = new Module(sym, IndexedSeq("data1", "data2"))
mod.bind(dataShapes = IndexedSeq(
DataDesc("data1", dShape1), DataDesc("data2", dShape2)),
labelShapes = Option(IndexedSeq(DataDesc("softmax_label", lShape)))
DataDesc("data1", dShape1), DataDesc("data2", dShape2, layout = "NCHW")),
labelShapes = Option(IndexedSeq(DataDesc("softmax_label", lShape, layout = "N")))
)
mod.initParams()
mod.initOptimizer(optimizer = new SGD(learningRate = 0.01f))
Expand Down
84 changes: 84 additions & 0 deletions scala-package/infer/pom.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>mxnet-parent_2.11</artifactId>
<groupId>ml.dmlc.mxnet</groupId>
<version>1.2.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>

<artifactId>mxnet-infer</artifactId>
<name>MXNet Scala Package - Inference</name>

<profiles>
<profile>
<id>osx-x86_64-cpu</id>
<properties>
<platform>osx-x86_64-cpu</platform>
</properties>
</profile>
<profile>
<id>linux-x86_64-cpu</id>
<properties>
<platform>linux-x86_64-cpu</platform>
</properties>
</profile>
<profile>
<id>linux-x86_64-gpu</id>
<properties>
<platform>linux-x86_64-gpu</platform>
</properties>
</profile>
</profiles>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

all of the above things can be inherited from parent pom.xml

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wasn't able inherit and make the tests run. the tests needs the jar to be built


<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.scalatest</groupId>
<artifactId>scalatest-maven-plugin</artifactId>
<configuration>
<argLine>
-Djava.library.path=${project.parent.basedir}/native/${platform}/target \
-Dlog4j.configuration=file://${project.basedir}/src/test/resources/log4j.properties
</argLine>
</configuration>
</plugin>
<plugin>
<groupId>org.scalastyle</groupId>
<artifactId>scalastyle-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupId>ml.dmlc.mxnet</groupId>
<artifactId>mxnet-core_${scala.binary.version}</artifactId>
<version>1.2.0-SNAPSHOT</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.mockito/mockito-all -->
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<version>1.10.19</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package ml.dmlc.mxnet.infer

import ml.dmlc.mxnet.{Context, DataDesc, NDArray}
import java.io.File

import org.slf4j.LoggerFactory

import scala.io
import scala.collection.mutable.ListBuffer

trait ClassifierBase {

/**
* Takes an Array of Floats and returns corresponding labels, score tuples.
* @param input: IndexedSequence one-dimensional array of Floats.
* @param topK: (Optional) How many top_k(sorting will be based on the last axis)
* elements to return, if not passed returns unsorted output.
* @return IndexedSequence of (Label, Score) tuples.
*/
def classify(input: IndexedSeq[Array[Float]],
topK: Option[Int] = None): IndexedSeq[(String, Float)]

/**
* Takes a Sequence of NDArrays and returns Label, Score tuples.
* @param input: Indexed Sequence of NDArrays
* @param topK: (Optional) How many top_k(sorting will be based on the last axis)
* elements to return, if not passed returns unsorted output.
* @return Traversable Sequence of (Label, Score) tuple, Score will be in the form of NDArray
*/
def classifyWithNDArray(input: IndexedSeq[NDArray],
topK: Option[Int] = None): IndexedSeq[IndexedSeq[(String, Float)]]
}

/**
* A class for classifier tasks
* @param modelPathPrefix PathPrefix from where to load the symbol, parameters and synset.txt
* Example: file://model-dir/resnet-152(containing resnet-152-symbol.json
* file://model-dir/synset.txt
* @param inputDescriptors Descriptors defining the input node names, shape,
* layout and Type parameters
* @param contexts Device Contexts on which you want to run Inference, defaults to CPU.
* @param epoch Model epoch to load, defaults to 0.
*/
class Classifier(modelPathPrefix: String,
protected val inputDescriptors: IndexedSeq[DataDesc],
protected val contexts: Array[Context] = Context.cpu(),
protected val epoch: Option[Int] = Some(0))
extends ClassifierBase {

private val logger = LoggerFactory.getLogger(classOf[Classifier])

protected[mxnet] val predictor: PredictBase = getPredictor()

protected[mxnet] val synsetFilePath = getSynsetFilePath(modelPathPrefix)

protected[mxnet] val synset = readSynsetFile(synsetFilePath)

protected[mxnet] val handler = MXNetHandler()
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can we make them protected[infer]?


/**
* Takes a flat arrays as input and returns a List of (Label, tuple)
* @param input: IndexedSequence one-dimensional array of Floats.
* @param topK: (Optional) How many top_k(sorting will be based on the last axis)
* elements to return, if not passed returns unsorted output.
* @return IndexedSequence of (Label, Score) tuples.
*/
override def classify(input: IndexedSeq[Array[Float]],
topK: Option[Int] = None): IndexedSeq[(String, Float)] = {

// considering only the first output
val predictResult = predictor.predict(input)(0)
var result: IndexedSeq[(String, Float)] = IndexedSeq.empty

if (topK.isDefined) {
val sortedIndex = predictResult.zipWithIndex.sortBy(-_._1).map(_._2).take(topK.get)
result = sortedIndex.map(i => (synset(i), predictResult(i))).toIndexedSeq
} else {
result = synset.zip(predictResult).toIndexedSeq
}
result
}

/**
* Takes input as NDArrays, useful when you want to perform multiple operations on
* the input Array or when you want to pass a batch of input.
* @param input: Indexed Sequence of NDArrays
* @param topK: (Optional) How many top_k(sorting will be based on the last axis)
* elements to return, if not passed returns unsorted output.
* @return Traversable Sequence of (Label, Score) tuple, Score will be in the form of NDArray
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You mean 'Results will be in the same order as the input NDArray' ? I cannot quite get what 'Score will be in the form of NDArray' means.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this remained from the previous version of the code. thanks for pointing. fixed

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sorry, have you fixed? I don't see from my end.

*/
override def classifyWithNDArray(input: IndexedSeq[NDArray], topK: Option[Int] = None)
: IndexedSeq[IndexedSeq[(String, Float)]] = {

// considering only the first output
val predictResultND: NDArray = predictor.predictWithNDArray(input)(0)

val predictResult: ListBuffer[Array[Float]] = ListBuffer[Array[Float]]()

// iterating over the individual items(batch size is in axis 0)
for (i <- 0 until predictResultND.shape(0)) {
val r = predictResultND.at(i)
predictResult += r.toArray
r.dispose()
}

var result: ListBuffer[IndexedSeq[(String, Float)]] =
ListBuffer.empty[IndexedSeq[(String, Float)]]

if (topK.isDefined) {
val sortedIndices = predictResult.map(r =>
r.zipWithIndex.sortBy(-_._1).map(_._2).take(topK.get)
)
for (i <- sortedIndices.indices) {
result += sortedIndices(i).map(sIndx =>
(synset(sIndx), predictResult(i)(sIndx))).toIndexedSeq
}
} else {
for (i <- predictResult.indices) {
result += synset.zip(predictResult(i)).toIndexedSeq
}
}

handler.execute(predictResultND.dispose())

result.toIndexedSeq
}

def getSynsetFilePath(modelPathPrefix: String): String = {
val dirPath = modelPathPrefix.substring(0, 1 + modelPathPrefix.lastIndexOf(File.separator))
val d = new File(dirPath)
require(d.exists && d.isDirectory, "directory: %s not found".format(dirPath))

val s = new File(dirPath + "synset.txt")
require(s.exists() && s.isFile, "File synset.txt should exist inside modelPath: %s".format
(dirPath + "synset.txt"))

s.getCanonicalPath
}

def readSynsetFile(synsetFilePath: String): List[String] = {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

better to return IndexedSeq since you will do something like synset(sIndx) later.

val f = io.Source.fromFile(synsetFilePath)
try {
f.getLines().toList
} finally {
f.close
}
}

def getPredictor(): PredictBase = {
new Predictor(modelPathPrefix, inputDescriptors, contexts, epoch)
}

}
Loading