Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,7 @@ class BisectingKMeansModel private[ml] (

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val predictUDF = udf((vector: Vector) => predict(vector))
dataset.withColumn($(predictionCol), predictUDF(col($(featuresCol))))
}
Expand Down Expand Up @@ -222,6 +223,7 @@ class BisectingKMeans @Since("2.0.0") (

@Since("2.0.0")
override def fit(dataset: Dataset[_]): BisectingKMeansModel = {
transformSchema(dataset.schema, logging = true)
val rdd: RDD[OldVector] = dataset.select(col($(featuresCol))).rdd.map {
case Row(point: Vector) => OldVectors.fromML(point)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ import org.apache.spark.ml.stat.distribution.MultivariateGaussian
import org.apache.spark.ml.util._
import org.apache.spark.mllib.clustering.{GaussianMixture => MLlibGM}
import org.apache.spark.mllib.linalg.{Matrices => OldMatrices, Matrix => OldMatrix,
Vector => OldVector, Vectors => OldVectors, VectorUDT => OldVectorUDT}
Vector => OldVector, Vectors => OldVectors}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
import org.apache.spark.sql.functions.{col, udf}
Expand Down Expand Up @@ -61,9 +61,9 @@ private[clustering] trait GaussianMixtureParams extends Params with HasMaxIter w
* @return output schema
*/
protected def validateAndTransformSchema(schema: StructType): StructType = {
SchemaUtils.checkColumnType(schema, $(featuresCol), new OldVectorUDT)
SchemaUtils.checkColumnType(schema, $(featuresCol), new VectorUDT)
SchemaUtils.appendColumn(schema, $(predictionCol), IntegerType)
SchemaUtils.appendColumn(schema, $(probabilityCol), new OldVectorUDT)
SchemaUtils.appendColumn(schema, $(probabilityCol), new VectorUDT)
}
}

Expand Down Expand Up @@ -95,6 +95,7 @@ class GaussianMixtureModel private[ml] (

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val predUDF = udf((vector: Vector) => predict(vector))
val probUDF = udf((vector: Vector) => predictProbability(vector))
dataset.withColumn($(predictionCol), predUDF(col($(featuresCol))))
Expand Down Expand Up @@ -317,6 +318,7 @@ class GaussianMixture @Since("2.0.0") (

@Since("2.0.0")
override def fit(dataset: Dataset[_]): GaussianMixtureModel = {
transformSchema(dataset.schema, logging = true)
val rdd: RDD[OldVector] = dataset.select(col($(featuresCol))).rdd.map {
case Row(point: Vector) => OldVectors.fromML(point)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,7 @@ class KMeansModel private[ml] (

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val predictUDF = udf((vector: Vector) => predict(vector))
dataset.withColumn($(predictionCol), predictUDF(col($(featuresCol))))
}
Expand Down Expand Up @@ -304,6 +305,7 @@ class KMeans @Since("1.5.0") (

@Since("2.0.0")
override def fit(dataset: Dataset[_]): KMeansModel = {
transformSchema(dataset.schema, logging = true)
val rdd: RDD[OldVector] = dataset.select(col($(featuresCol))).rdd.map {
case Row(point: Vector) => OldVectors.fromML(point)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ class Interaction @Since("1.6.0") (@Since("1.6.0") override val uid: String) ext

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val inputFeatures = $(inputCols).map(c => dataset.schema(c))
val featureEncoders = getFeatureEncoders(inputFeatures)
val featureAttrs = getFeatureAttrs(inputFeatures)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@ class MinMaxScalerModel private[ml] (

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val originalRange = (originalMax.asBreeze - originalMin.asBreeze).toArray
val minArray = originalMin.toArray

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ final class QuantileDiscretizer @Since("1.6.0") (@Since("1.6.0") override val ui

@Since("1.6.0")
override def transformSchema(schema: StructType): StructType = {
SchemaUtils.checkColumnType(schema, $(inputCol), DoubleType)
SchemaUtils.checkNumericType(schema, $(inputCol))
val inputFields = schema.fields
require(inputFields.forall(_.name != $(outputCol)),
s"Output column ${$(outputCol)} already exists.")
Expand All @@ -108,6 +108,7 @@ final class QuantileDiscretizer @Since("1.6.0") (@Since("1.6.0") override val ui

@Since("2.0.0")
override def fit(dataset: Dataset[_]): Bucketizer = {
transformSchema(dataset.schema, logging = true)
val splits = dataset.stat.approxQuantile($(inputCol),
(0.0 to 1.0 by 1.0/$(numBuckets)).toArray, $(relativeError))
splits(0) = Double.NegativeInfinity
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,7 @@ class RFormula @Since("1.5.0") (@Since("1.5.0") override val uid: String)

@Since("2.0.0")
override def fit(dataset: Dataset[_]): RFormulaModel = {
transformSchema(dataset.schema, logging = true)
require(isDefined(formula), "Formula must be defined first.")
val parsedFormula = RFormulaParser.parse($(formula))
val resolvedFormula = parsedFormula.resolve(dataset.schema)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ class SQLTransformer @Since("1.6.0") (@Since("1.6.0") override val uid: String)

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val tableName = Identifiable.randomUID(uid)
dataset.createOrReplaceTempView(tableName)
val realStatement = $(statement).replace(tableIdentifier, tableName)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,7 @@ class AFTSurvivalRegression @Since("1.6.0") (@Since("1.6.0") override val uid: S

@Since("2.0.0")
override def fit(dataset: Dataset[_]): AFTSurvivalRegressionModel = {
validateAndTransformSchema(dataset.schema, fitting = true)
transformSchema(dataset.schema, logging = true)
val instances = extractAFTPoints(dataset)
val handlePersistence = dataset.rdd.getStorageLevel == StorageLevel.NONE
if (handlePersistence) instances.persist(StorageLevel.MEMORY_AND_DISK)
Expand Down Expand Up @@ -326,7 +326,7 @@ class AFTSurvivalRegressionModel private[ml] (

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema)
transformSchema(dataset.schema, logging = true)
val predictUDF = udf { features: Vector => predict(features) }
val predictQuantilesUDF = udf { features: Vector => predictQuantiles(features)}
if (hasQuantilesCol) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ class IsotonicRegression @Since("1.5.0") (@Since("1.5.0") override val uid: Stri

@Since("2.0.0")
override def fit(dataset: Dataset[_]): IsotonicRegressionModel = {
validateAndTransformSchema(dataset.schema, fitting = true)
transformSchema(dataset.schema, logging = true)
// Extract columns from data. If dataset is persisted, do not persist oldDataset.
val instances = extractWeightedLabeledPoints(dataset)
val handlePersistence = dataset.rdd.getStorageLevel == StorageLevel.NONE
Expand Down Expand Up @@ -234,6 +234,7 @@ class IsotonicRegressionModel private[ml] (

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
val predict = dataset.schema($(featuresCol)).dataType match {
case DoubleType =>
udf { feature: Double => oldModel.predict(feature) }
Expand Down