Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
package org.apache.spark.ml.classification

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.ml.linalg.{DenseVector, Vector, Vectors, VectorUDT}
import org.apache.spark.ml.linalg.{DenseVector, Vector, VectorUDT}
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util.SchemaUtils
import org.apache.spark.sql.{DataFrame, Dataset}
Expand Down Expand Up @@ -193,19 +193,24 @@ abstract class ProbabilisticClassificationModel[

/**
* Given a vector of class conditional probabilities, select the predicted label.
* This supports thresholds which favor particular labels.
* @return predicted label
* This returns the class, if any, whose probability is equal to or greater than its
* threshold (if specified), and whose probability is highest. If several classes meet
* their thresholds and are equally probable, the one with lower threshold is selected.
* If several have equal thresholds, the one with lower class index is selected.
*
* @return predicted label, or NaN if no label is predicted
*/
protected def probability2prediction(probability: Vector): Double = {
if (!isDefined(thresholds)) {
probability.argmax
val prob = probability.toArray
if (isDefined(thresholds)) {
val candidates = prob.zip(getThresholds).zipWithIndex.filter { case ((p, t), _) => p >= t }
if (candidates.isEmpty) {
Double.NaN
} else {
candidates.maxBy { case ((p, t), i) => (p, -t, -i) }._2
}
} else {
val thresholds: Array[Double] = getThresholds
val scaledProbability: Array[Double] =
probability.toArray.zip(thresholds).map { case (p, t) =>
if (t == 0.0) Double.PositiveInfinity else p / t
}
Vectors.dense(scaledProbability).argmax
prob.zipWithIndex.maxBy { case (p, i) => (p, -i) }._2
}
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -988,22 +988,22 @@ class MultinomialLogisticRegressionSuite
val basePredictions = model.transform(dataset).select("prediction").collect()

// should predict all zeros
model.setThresholds(Array(1, 1000, 1000))
model.setThresholds(Array(0, 1, 1))
val zeroPredictions = model.transform(dataset).select("prediction").collect()
assert(zeroPredictions.forall(_.getDouble(0) === 0.0))

// should predict all ones
model.setThresholds(Array(1000, 1, 1000))
model.setThresholds(Array(1, 0, 1))
val onePredictions = model.transform(dataset).select("prediction").collect()
assert(onePredictions.forall(_.getDouble(0) === 1.0))

// should predict all twos
model.setThresholds(Array(1000, 1000, 1))
model.setThresholds(Array(1, 1, 0))
val twoPredictions = model.transform(dataset).select("prediction").collect()
assert(twoPredictions.forall(_.getDouble(0) === 2.0))

// constant threshold scaling is the same as no thresholds
model.setThresholds(Array(1000, 1000, 1000))
model.setThresholds(Array(0.1, 0.1, 0.1))
val scaledPredictions = model.transform(dataset).select("prediction").collect()
assert(scaledPredictions.zip(basePredictions).forall { case (scaled, base) =>
scaled.getDouble(0) === base.getDouble(0)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,26 +36,53 @@ final class TestProbabilisticClassificationModel(
rawPrediction
}

def friendlyPredict(input: Vector): Double = {
predict(input)
def friendlyPredict(input: Double*): Double = {
predict(Vectors.dense(input.toArray))
}
}


class ProbabilisticClassifierSuite extends SparkFunSuite {

test("test thresholding") {
val thresholds = Array(0.5, 0.2)
val testModel = new TestProbabilisticClassificationModel("myuid", 2, 2)
.setThresholds(thresholds)
assert(testModel.friendlyPredict(Vectors.dense(Array(1.0, 1.0))) === 1.0)
assert(testModel.friendlyPredict(Vectors.dense(Array(1.0, 0.2))) === 0.0)
.setThresholds(Array(0.5, 0.2))
// Both exceed threshold; pick more probable one
assert(testModel.friendlyPredict(0.8, 0.9) === 1.0)
assert(testModel.friendlyPredict(1.0, 0.2) === 0.0)
// Tie; take one with lower threshold
assert(testModel.friendlyPredict(0.8, 0.8) === 1.0)
// Tie at 1
assert(testModel.friendlyPredict(1.0, 1.0) === 1.0)
// Class 0 more probable but doesn't meet threshold
assert(testModel.friendlyPredict(0.4, 0.3) === 1.0)
// Neither meets threshold
assert(testModel.friendlyPredict(0.4, 0.1).isNaN)
assert(testModel.friendlyPredict(0.0, 0.0).isNaN)
}

test("test thresholding not required") {
test("test equals thresholds") {
val testModel = new TestProbabilisticClassificationModel("myuid", 2, 2)
assert(testModel.friendlyPredict(Vectors.dense(Array(1.0, 2.0))) === 1.0)
.setThresholds(Array(0.5, 0.5))
// Both exceed threshold; pick more probable one
assert(testModel.friendlyPredict(0.8, 0.9) === 1.0)
// Tie; take one with lower class
assert(testModel.friendlyPredict(0.8, 0.8) === 0.0)
assert(testModel.friendlyPredict(0.5, 0.5) === 0.0)
// Neither meets threshold
assert(testModel.friendlyPredict(0.4, 0.1).isNaN)
}

test("test no thresholding") {
val testModel = new TestProbabilisticClassificationModel("myuid", 2, 2)
// Pick more probable class
assert(testModel.friendlyPredict(1.0, 2.0) === 1.0)
// Tie, pick first class
assert(testModel.friendlyPredict(1.0, 1.0) === 0.0)
assert(testModel.friendlyPredict(0.5, 0.5) === 0.0)
assert(testModel.friendlyPredict(0.0, 0.0) === 0.0)
}

}

object ProbabilisticClassifierSuite {
Expand Down