Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 10 additions & 3 deletions R/pkg/R/mllib.R
Original file line number Diff line number Diff line change
Expand Up @@ -694,12 +694,19 @@ setMethod("predict", signature(object = "KMeansModel"),
#' }
#' @note spark.mlp since 2.1.0
setMethod("spark.mlp", signature(data = "SparkDataFrame"),
function(data, blockSize = 128, layers = c(3, 5, 2), solver = "l-bfgs", maxIter = 100,
tol = 0.5, stepSize = 1, seed = 1) {
function(data, layers, blockSize = 128, solver = "l-bfgs", maxIter = 100,
tol = 1E-6, stepSize = 0.03, seed = NULL) {
layers <- as.integer(na.omit(layers))
if (length(layers) <= 1) {
stop ("layers must be a integer vector with length > 1.")
}
if (!is.null(seed)) {
seed <- as.character(as.integer(seed))
}
jobj <- callJStatic("org.apache.spark.ml.r.MultilayerPerceptronClassifierWrapper",
"fit", data@sdf, as.integer(blockSize), as.array(layers),
as.character(solver), as.integer(maxIter), as.numeric(tol),
as.numeric(stepSize), as.integer(seed))
as.numeric(stepSize), seed)
new("MultilayerPerceptronClassificationModel", jobj = jobj)
})

Expand Down
19 changes: 19 additions & 0 deletions R/pkg/inst/tests/testthat/test_mllib.R
Original file line number Diff line number Diff line change
Expand Up @@ -383,6 +383,25 @@ test_that("spark.mlp", {

unlink(modelPath)

# Test default parameter
model <- spark.mlp(df, layers = c(4, 5, 4, 3))
mlpPredictions <- collect(select(predict(model, mlpTestDF), "prediction"))
expect_equal(head(mlpPredictions$prediction, 10), c(1, 1, 1, 1, 0, 1, 2, 2, 1, 0))

# Test illegal parameter
expect_error(spark.mlp(df, layers = NULL), "layers must be a integer vector with length > 1.")
expect_error(spark.mlp(df, layers = c()), "layers must be a integer vector with length > 1.")
expect_error(spark.mlp(df, layers = c(3)), "layers must be a integer vector with length > 1.")

# Test random seed
# default seed
model <- spark.mlp(df, layers = c(4, 5, 4, 3), maxIter = 10)
mlpPredictions <- collect(select(predict(model, mlpTestDF), "prediction"))
expect_equal(head(mlpPredictions$prediction, 12), c(1, 1, 1, 1, 0, 1, 2, 2, 1, 2, 0, 1))
# seed equals 10
model <- spark.mlp(df, layers = c(4, 5, 4, 3), maxIter = 10, seed = 10)
mlpPredictions <- collect(select(predict(model, mlpTestDF), "prediction"))
expect_equal(head(mlpPredictions$prediction, 12), c(1, 1, 1, 1, 2, 1, 2, 2, 1, 0, 0, 1))
})

test_that("spark.naiveBayes", {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -53,26 +53,26 @@ private[r] object MultilayerPerceptronClassifierWrapper
def fit(
data: DataFrame,
blockSize: Int,
layers: Array[Double],
layers: Array[Int],
solver: String,
maxIter: Int,
tol: Double,
stepSize: Double,
seed: Int
seed: String
): MultilayerPerceptronClassifierWrapper = {
// get labels and feature names from output schema
val schema = data.schema

// assemble and fit the pipeline
val mlp = new MultilayerPerceptronClassifier()
.setLayers(layers.map(_.toInt))
.setLayers(layers)
.setBlockSize(blockSize)
.setSolver(solver)
.setMaxIter(maxIter)
.setTol(tol)
.setStepSize(stepSize)
.setSeed(seed)
.setPredictionCol(PREDICTED_LABEL_COL)
if (seed != null && seed.length > 0) mlp.setSeed(seed.toInt)
val pipeline = new Pipeline()
.setStages(Array(mlp))
.fit(data)
Expand Down