Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution

import org.apache.spark.sql.catalyst.expressions.UnsafeRow
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, ExprCode}
import org.apache.spark.sql.execution.columnar.InMemoryTableScanExec
import org.apache.spark.sql.execution.metric.SQLMetrics
import org.apache.spark.sql.execution.vectorized.{ColumnarBatch, ColumnVector}
import org.apache.spark.sql.types.DataType


/**
* Helper trait for abstracting scan functionality using
* [[org.apache.spark.sql.execution.vectorized.ColumnarBatch]]es.
*/
private[sql] trait ColumnarBatchScan extends CodegenSupport {

val inMemoryTableScan: InMemoryTableScanExec = null
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: this is unused right?


override lazy val metrics = Map(
"numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"),
"scanTime" -> SQLMetrics.createTimingMetric(sparkContext, "scan time"))

/**
* Generate [[ColumnVector]] expressions for our parent to consume as rows.
* This is called once per [[ColumnarBatch]].
*/
private def genCodeColumnVector(
ctx: CodegenContext,
columnVar: String,
ordinal: String,
dataType: DataType,
nullable: Boolean): ExprCode = {
val javaType = ctx.javaType(dataType)
val value = ctx.getValue(columnVar, dataType, ordinal)
val isNullVar = if (nullable) { ctx.freshName("isNull") } else { "false" }
val valueVar = ctx.freshName("value")
val str = s"columnVector[$columnVar, $ordinal, ${dataType.simpleString}]"
val code = s"${ctx.registerComment(str)}\n" + (if (nullable) {
s"""
boolean $isNullVar = $columnVar.isNullAt($ordinal);
$javaType $valueVar = $isNullVar ? ${ctx.defaultValue(dataType)} : ($value);
"""
} else {
s"$javaType $valueVar = $value;"
}).trim
ExprCode(code, isNullVar, valueVar)
}

/**
* Produce code to process the input iterator as [[ColumnarBatch]]es.
* This produces an [[UnsafeRow]] for each row in each batch.
*/
// TODO: return ColumnarBatch.Rows instead
override protected def doProduce(ctx: CodegenContext): String = {
val input = ctx.freshName("input")
// PhysicalRDD always just has one input
ctx.addMutableState("scala.collection.Iterator", input, s"$input = inputs[0];")

// metrics
val numOutputRows = metricTerm(ctx, "numOutputRows")
val scanTimeMetric = metricTerm(ctx, "scanTime")
val scanTimeTotalNs = ctx.freshName("scanTime")
ctx.addMutableState("long", scanTimeTotalNs, s"$scanTimeTotalNs = 0;")

val columnarBatchClz = "org.apache.spark.sql.execution.vectorized.ColumnarBatch"
val batch = ctx.freshName("batch")
ctx.addMutableState(columnarBatchClz, batch, s"$batch = null;")

val columnVectorClz = "org.apache.spark.sql.execution.vectorized.ColumnVector"
val idx = ctx.freshName("batchIdx")
ctx.addMutableState("int", idx, s"$idx = 0;")
val colVars = output.indices.map(i => ctx.freshName("colInstance" + i))
val columnAssigns = colVars.zipWithIndex.map { case (name, i) =>
ctx.addMutableState(columnVectorClz, name, s"$name = null;")
s"$name = $batch.column($i);"
}

val nextBatch = ctx.freshName("nextBatch")
ctx.addNewFunction(nextBatch,
s"""
|private void $nextBatch() throws java.io.IOException {
| long getBatchStart = System.nanoTime();
| if ($input.hasNext()) {
| $batch = ($columnarBatchClz)$input.next();
| $numOutputRows.add($batch.numRows());
| $idx = 0;
| ${columnAssigns.mkString("", "\n", "\n")}
| }
| $scanTimeTotalNs += System.nanoTime() - getBatchStart;
|}""".stripMargin)

ctx.currentVars = null
val rowidx = ctx.freshName("rowIdx")
val columnsBatchInput = (output zip colVars).map { case (attr, colVar) =>
genCodeColumnVector(ctx, colVar, rowidx, attr.dataType, attr.nullable)
}
s"""
|if ($batch == null) {
| $nextBatch();
|}
|while ($batch != null) {
| int numRows = $batch.numRows();
| while ($idx < numRows) {
| int $rowidx = $idx++;
| ${consume(ctx, columnsBatchInput).trim}
| if (shouldStop()) return;
| }
| $batch = null;
| $nextBatch();
|}
|$scanTimeMetric.add($scanTimeTotalNs / (1000 * 1000));
|$scanTimeTotalNs = 0;
""".stripMargin
}

}
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ case class FileSourceScanExec(
partitionFilters: Seq[Expression],
dataFilters: Seq[Filter],
override val metastoreTableIdentifier: Option[TableIdentifier])
extends DataSourceScanExec {
extends DataSourceScanExec with ColumnarBatchScan {

val supportsBatch = relation.fileFormat.supportBatch(
relation.sparkSession, StructType.fromAttributes(output))
Expand Down Expand Up @@ -296,7 +296,7 @@ case class FileSourceScanExec(

override protected def doProduce(ctx: CodegenContext): String = {
if (supportsBatch) {
return doProduceVectorized(ctx)
return super.doProduce(ctx)
}
val numOutputRows = metricTerm(ctx, "numOutputRows")
// PhysicalRDD always just has one input
Expand All @@ -320,88 +320,6 @@ case class FileSourceScanExec(
""".stripMargin
}

// Support codegen so that we can avoid the UnsafeRow conversion in all cases. Codegen
// never requires UnsafeRow as input.
private def doProduceVectorized(ctx: CodegenContext): String = {
val input = ctx.freshName("input")
// PhysicalRDD always just has one input
ctx.addMutableState("scala.collection.Iterator", input, s"$input = inputs[0];")

// metrics
val numOutputRows = metricTerm(ctx, "numOutputRows")
val scanTimeMetric = metricTerm(ctx, "scanTime")
val scanTimeTotalNs = ctx.freshName("scanTime")
ctx.addMutableState("long", scanTimeTotalNs, s"$scanTimeTotalNs = 0;")

val columnarBatchClz = "org.apache.spark.sql.execution.vectorized.ColumnarBatch"
val batch = ctx.freshName("batch")
ctx.addMutableState(columnarBatchClz, batch, s"$batch = null;")

val columnVectorClz = "org.apache.spark.sql.execution.vectorized.ColumnVector"
val idx = ctx.freshName("batchIdx")
ctx.addMutableState("int", idx, s"$idx = 0;")
val colVars = output.indices.map(i => ctx.freshName("colInstance" + i))
val columnAssigns = colVars.zipWithIndex.map { case (name, i) =>
ctx.addMutableState(columnVectorClz, name, s"$name = null;")
s"$name = $batch.column($i);"
}

val nextBatch = ctx.freshName("nextBatch")
ctx.addNewFunction(nextBatch,
s"""
|private void $nextBatch() throws java.io.IOException {
| long getBatchStart = System.nanoTime();
| if ($input.hasNext()) {
| $batch = ($columnarBatchClz)$input.next();
| $numOutputRows.add($batch.numRows());
| $idx = 0;
| ${columnAssigns.mkString("", "\n", "\n")}
| }
| $scanTimeTotalNs += System.nanoTime() - getBatchStart;
|}""".stripMargin)

ctx.currentVars = null
val rowidx = ctx.freshName("rowIdx")
val columnsBatchInput = (output zip colVars).map { case (attr, colVar) =>
genCodeColumnVector(ctx, colVar, rowidx, attr.dataType, attr.nullable)
}
s"""
|if ($batch == null) {
| $nextBatch();
|}
|while ($batch != null) {
| int numRows = $batch.numRows();
| while ($idx < numRows) {
| int $rowidx = $idx++;
| ${consume(ctx, columnsBatchInput).trim}
| if (shouldStop()) return;
| }
| $batch = null;
| $nextBatch();
|}
|$scanTimeMetric.add($scanTimeTotalNs / (1000 * 1000));
|$scanTimeTotalNs = 0;
""".stripMargin
}

private def genCodeColumnVector(ctx: CodegenContext, columnVar: String, ordinal: String,
dataType: DataType, nullable: Boolean): ExprCode = {
val javaType = ctx.javaType(dataType)
val value = ctx.getValue(columnVar, dataType, ordinal)
val isNullVar = if (nullable) { ctx.freshName("isNull") } else { "false" }
val valueVar = ctx.freshName("value")
val str = s"columnVector[$columnVar, $ordinal, ${dataType.simpleString}]"
val code = s"${ctx.registerComment(str)}\n" + (if (nullable) {
s"""
boolean ${isNullVar} = ${columnVar}.isNullAt($ordinal);
$javaType ${valueVar} = ${isNullVar} ? ${ctx.defaultValue(dataType)} : ($value);
"""
} else {
s"$javaType ${valueVar} = $value;"
}).trim
ExprCode(code, isNullVar, valueVar)
}

/**
* Create an RDD for bucketed reads.
* The non-bucketed variant of this function is [[createNonBucketedReadRDD]].
Expand Down