Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -749,15 +749,15 @@ class GeneralizedLinearRegressionSuite
library(statmod)
y <- c(1.0, 0.5, 0.7, 0.3)
w <- c(1, 2, 3, 4)
for (fam in list(gaussian(), poisson(), binomial(), Gamma(), tweedie(1.6))) {
for (fam in list(binomial(), Gamma(), gaussian(), poisson(), tweedie(1.6))) {
model1 <- glm(y ~ 1, family = fam)
model2 <- glm(y ~ 1, family = fam, weights = w)
print(as.vector(c(coef(model1), coef(model2))))
}
[1] 0.625 0.530
[1] -0.4700036 -0.6348783
[1] 0.5108256 0.1201443
[1] 1.600000 1.886792
[1] 0.625 0.530
[1] -0.4700036 -0.6348783
[1] 1.325782 1.463641
*/

Expand All @@ -768,13 +768,13 @@ class GeneralizedLinearRegressionSuite
Instance(0.3, 4.0, Vectors.zeros(0))
).toDF()

val expected = Seq(0.625, 0.530, -0.4700036, -0.6348783, 0.5108256, 0.1201443,
1.600000, 1.886792, 1.325782, 1.463641)
val expected = Seq(0.5108256, 0.1201443, 1.600000, 1.886792, 0.625, 0.530,
-0.4700036, -0.6348783, 1.325782, 1.463641)

import GeneralizedLinearRegression._

var idx = 0
for (family <- Seq("gaussian", "poisson", "binomial", "gamma", "tweedie")) {
for (family <- GeneralizedLinearRegression.supportedFamilyNames.sortWith(_ < _)) {
for (useWeight <- Seq(false, true)) {
val trainer = new GeneralizedLinearRegression().setFamily(family)
if (useWeight) trainer.setWeightCol("weight")
Expand Down Expand Up @@ -807,7 +807,7 @@ class GeneralizedLinearRegressionSuite
0.5, 2.1, 0.5, 1.0, 2.0,
0.9, 0.4, 1.0, 2.0, 1.0,
0.7, 0.7, 0.0, 3.0, 3.0), 4, 5, byrow = TRUE))
families <- list(gaussian, binomial, poisson, Gamma, tweedie(1.5))
families <- list(binomial, Gamma, gaussian, poisson, tweedie(1.5))
f1 <- V1 ~ -1 + V4 + V5
f2 <- V1 ~ V4 + V5
for (f in c(f1, f2)) {
Expand All @@ -816,15 +816,15 @@ class GeneralizedLinearRegressionSuite
print(as.vector(coef(model)))
}
}
[1] 0.5169222 -0.3344444
[1] 0.9419107 -0.6864404
[1] 0.1812436 -0.6568422
[1] -0.2869094 0.7857710
[1] 0.5169222 -0.3344444
[1] 0.1812436 -0.6568422
[1] 0.1055254 0.2979113
[1] -0.05990345 0.53188982 -0.32118415
[1] -0.2147117 0.9911750 -0.6356096
[1] -1.5616130 0.6646470 -0.3192581
[1] 0.3390397 -0.3406099 0.6870259
[1] -0.05990345 0.53188982 -0.32118415
[1] -1.5616130 0.6646470 -0.3192581
[1] 0.3665034 0.1039416 0.1484616
*/
val dataset = Seq(
Expand All @@ -835,23 +835,22 @@ class GeneralizedLinearRegressionSuite
).toDF()

val expected = Seq(
Vectors.dense(0, 0.5169222, -0.3344444),
Vectors.dense(0, 0.9419107, -0.6864404),
Vectors.dense(0, 0.1812436, -0.6568422),
Vectors.dense(0, -0.2869094, 0.785771),
Vectors.dense(0, 0.5169222, -0.3344444),
Vectors.dense(0, 0.1812436, -0.6568422),
Vectors.dense(0, 0.1055254, 0.2979113),
Vectors.dense(-0.05990345, 0.53188982, -0.32118415),
Vectors.dense(-0.2147117, 0.991175, -0.6356096),
Vectors.dense(-1.561613, 0.664647, -0.3192581),
Vectors.dense(0.3390397, -0.3406099, 0.6870259),
Vectors.dense(-0.05990345, 0.53188982, -0.32118415),
Vectors.dense(-1.561613, 0.664647, -0.3192581),
Vectors.dense(0.3665034, 0.1039416, 0.1484616))

import GeneralizedLinearRegression._

var idx = 0

for (fitIntercept <- Seq(false, true)) {
for (family <- Seq("gaussian", "binomial", "poisson", "gamma", "tweedie")) {
for (family <- GeneralizedLinearRegression.supportedFamilyNames.sortWith(_ < _)) {
val trainer = new GeneralizedLinearRegression().setFamily(family)
.setFitIntercept(fitIntercept).setOffsetCol("offset")
.setWeightCol("weight").setLinkPredictionCol("linkPrediction")
Expand Down