Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 13 additions & 1 deletion python/pyspark/sql/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -2087,10 +2087,22 @@ def _wrapped(self):
"""
Wrap this udf with a function and attach docstring from func
"""
@functools.wraps(self.func)

# It is possible for a callable instance without __name__ attribute or/and
# __module__ attribute to be wrapped here. For example, functools.partial. In this case,
# we should avoid wrapping the attributes from the wrapped function to the wrapper
# function. So, we take out these attribute names from the default names to set and
# then manually assign it after being wrapped.
assignments = tuple(
a for a in functools.WRAPPER_ASSIGNMENTS if a != '__name__' and a != '__module__')

@functools.wraps(self.func, assigned=assignments)
def wrapper(*args):
return self(*args)

wrapper.__name__ = self._name
wrapper.__module__ = (self.func.__module__ if hasattr(self.func, '__module__')
else self.func.__class__.__module__)
wrapper.func = self.func
wrapper.returnType = self.returnType

Expand Down
21 changes: 21 additions & 0 deletions python/pyspark/sql/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -679,6 +679,27 @@ def f(x):
self.assertEqual(f, f_.func)
self.assertEqual(return_type, f_.returnType)

class F(object):
"""Identity"""
def __call__(self, x):
return x

f = F()
return_type = IntegerType()
f_ = udf(f, return_type)

self.assertTrue(f.__doc__ in f_.__doc__)
self.assertEqual(f, f_.func)
self.assertEqual(return_type, f_.returnType)

f = functools.partial(f, x=1)
return_type = IntegerType()
f_ = udf(f, return_type)

self.assertTrue(f.__doc__ in f_.__doc__)
self.assertEqual(f, f_.func)
self.assertEqual(return_type, f_.returnType)

def test_basic_functions(self):
rdd = self.sc.parallelize(['{"foo":"bar"}', '{"foo":"baz"}'])
df = self.spark.read.json(rdd)
Expand Down