-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-24002][SQL][BACKPORT-2.3] Task not serializable caused by org.apache.parquet.io.api.Binary$ByteBufferBackedBinary.getBytes #21351
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
….io.api.Binary$ByteBufferBackedBinary.getBytes ``` Py4JJavaError: An error occurred while calling o153.sql. : org.apache.spark.SparkException: Job aborted. at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:223) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:189) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68) at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:79) at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:190) at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:190) at org.apache.spark.sql.Dataset$$anonfun$59.apply(Dataset.scala:3021) at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:89) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:127) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3020) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:190) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:646) at sun.reflect.GeneratedMethodAccessor153.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380) at py4j.Gateway.invoke(Gateway.java:293) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:226) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.spark.SparkException: Exception thrown in Future.get: at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:190) at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:267) at org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec.doConsume(BroadcastNestedLoopJoinExec.scala:530) at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:155) at org.apache.spark.sql.execution.ProjectExec.consume(basicPhysicalOperators.scala:37) at org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:69) at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:155) at org.apache.spark.sql.execution.FilterExec.consume(basicPhysicalOperators.scala:144) ... at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:190) ... 23 more Caused by: java.util.concurrent.ExecutionException: org.apache.spark.SparkException: Task not serializable at java.util.concurrent.FutureTask.report(FutureTask.java:122) at java.util.concurrent.FutureTask.get(FutureTask.java:206) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:179) ... 276 more Caused by: org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:340) at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:330) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:156) at org.apache.spark.SparkContext.clean(SparkContext.scala:2380) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:850) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:849) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:371) at org.apache.spark.rdd.RDD.mapPartitionsWithIndex(RDD.scala:849) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:417) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:123) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$3.apply(SparkPlan.scala:152) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:149) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:118) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.prepareShuffleDependency(ShuffleExchangeExec.scala:89) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$doExecute$1.apply(ShuffleExchangeExec.scala:125) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$doExecute$1.apply(ShuffleExchangeExec.scala:116) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.doExecute(ShuffleExchangeExec.scala:116) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:123) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$3.apply(SparkPlan.scala:152) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:149) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:118) at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:271) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:181) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:414) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:123) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$3.apply(SparkPlan.scala:152) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:149) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:118) at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:61) at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:70) at org.apache.spark.sql.execution.SparkPlan.executeCollectResult(SparkPlan.scala:264) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1$$anonfun$call$1.apply(BroadcastExchangeExec.scala:93) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1$$anonfun$call$1.apply(BroadcastExchangeExec.scala:81) at org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:150) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1.call(BroadcastExchangeExec.scala:80) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1.call(BroadcastExchangeExec.scala:76) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more Caused by: java.nio.BufferUnderflowException at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:151) at java.nio.ByteBuffer.get(ByteBuffer.java:715) at org.apache.parquet.io.api.Binary$ByteBufferBackedBinary.getBytes(Binary.java:405) at org.apache.parquet.io.api.Binary$ByteBufferBackedBinary.getBytesUnsafe(Binary.java:414) at org.apache.parquet.io.api.Binary$ByteBufferBackedBinary.writeObject(Binary.java:484) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1128) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) ``` The Parquet filters are serializable but not thread safe. SparkPlan.prepare() could be called in different threads (BroadcastExchange will call it in a thread pool). Thus, we could serialize the same Parquet filter at the same time. This is not easily reproduced. The fix is to avoid serializing these Parquet filters in the driver. This PR is to avoid serializing these Parquet filters by moving the parquet filter generation from the driver to executors. Having two queries one is a 1000-line SQL query and a 3000-line SQL query. Need to run at least one hour with a heavy write workload to reproduce once. Author: gatorsmile <gatorsmile@gmail.com> Closes apache#21086 from gatorsmile/taskNotSerializable.
Member
Author
|
cc @cloud-fan @ghoto |
|
Test build #90713 has finished for PR 21351 at commit
|
Contributor
|
retest this please |
Contributor
|
LGTM |
|
Test build #90716 has finished for PR 21351 at commit
|
Contributor
|
retest this please |
|
Test build #90727 has finished for PR 21351 at commit
|
Contributor
|
thanks, merging to 2.3! |
asfgit
pushed a commit
that referenced
this pull request
May 17, 2018
…apache.parquet.io.api.Binary$ByteBufferBackedBinary.getBytes This PR is to backport #21086 to Apache Spark 2.3 ---- ``` Py4JJavaError: An error occurred while calling o153.sql. : org.apache.spark.SparkException: Job aborted. at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:223) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:189) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68) at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:79) at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:190) at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:190) at org.apache.spark.sql.Dataset$$anonfun$59.apply(Dataset.scala:3021) at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:89) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:127) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3020) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:190) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:646) at sun.reflect.GeneratedMethodAccessor153.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380) at py4j.Gateway.invoke(Gateway.java:293) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:226) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.spark.SparkException: Exception thrown in Future.get: at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:190) at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:267) at org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec.doConsume(BroadcastNestedLoopJoinExec.scala:530) at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:155) at org.apache.spark.sql.execution.ProjectExec.consume(basicPhysicalOperators.scala:37) at org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:69) at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:155) at org.apache.spark.sql.execution.FilterExec.consume(basicPhysicalOperators.scala:144) ... at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:190) ... 23 more Caused by: java.util.concurrent.ExecutionException: org.apache.spark.SparkException: Task not serializable at java.util.concurrent.FutureTask.report(FutureTask.java:122) at java.util.concurrent.FutureTask.get(FutureTask.java:206) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:179) ... 276 more Caused by: org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:340) at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:330) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:156) at org.apache.spark.SparkContext.clean(SparkContext.scala:2380) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:850) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:849) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:371) at org.apache.spark.rdd.RDD.mapPartitionsWithIndex(RDD.scala:849) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:417) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:123) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$3.apply(SparkPlan.scala:152) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:149) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:118) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.prepareShuffleDependency(ShuffleExchangeExec.scala:89) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$doExecute$1.apply(ShuffleExchangeExec.scala:125) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$doExecute$1.apply(ShuffleExchangeExec.scala:116) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.doExecute(ShuffleExchangeExec.scala:116) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:123) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$3.apply(SparkPlan.scala:152) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:149) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:118) at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:271) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:181) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:414) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:123) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$3.apply(SparkPlan.scala:152) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:149) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:118) at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:61) at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:70) at org.apache.spark.sql.execution.SparkPlan.executeCollectResult(SparkPlan.scala:264) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1$$anonfun$call$1.apply(BroadcastExchangeExec.scala:93) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1$$anonfun$call$1.apply(BroadcastExchangeExec.scala:81) at org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:150) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1.call(BroadcastExchangeExec.scala:80) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anon$1.call(BroadcastExchangeExec.scala:76) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more Caused by: java.nio.BufferUnderflowException at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:151) at java.nio.ByteBuffer.get(ByteBuffer.java:715) at org.apache.parquet.io.api.Binary$ByteBufferBackedBinary.getBytes(Binary.java:405) at org.apache.parquet.io.api.Binary$ByteBufferBackedBinary.getBytesUnsafe(Binary.java:414) at org.apache.parquet.io.api.Binary$ByteBufferBackedBinary.writeObject(Binary.java:484) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1128) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) ``` The Parquet filters are serializable but not thread safe. SparkPlan.prepare() could be called in different threads (BroadcastExchange will call it in a thread pool). Thus, we could serialize the same Parquet filter at the same time. This is not easily reproduced. The fix is to avoid serializing these Parquet filters in the driver. This PR is to avoid serializing these Parquet filters by moving the parquet filter generation from the driver to executors. ## How was this patch tested? Having two queries one is a 1000-line SQL query and a 3000-line SQL query. Need to run at least one hour with a heavy write workload to reproduce once. Author: gatorsmile <gatorsmile@gmail.com> Closes #21351 from gatorsmile/backportSPARK-24002.
|
@gatorsmile thanks for adding this! Is there an estimate for a 2.3.1 patch? |
Member
Author
|
@imarios Please check the dev mailing list. It is being voted. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR is to backport #21086 to Apache Spark 2.3
The Parquet filters are serializable but not thread safe. SparkPlan.prepare() could be called in different threads (BroadcastExchange will call it in a thread pool). Thus, we could serialize the same Parquet filter at the same time. This is not easily reproduced. The fix is to avoid serializing these Parquet filters in the driver. This PR is to avoid serializing these Parquet filters by moving the parquet filter generation from the driver to executors.
How was this patch tested?
Having two queries one is a 1000-line SQL query and a 3000-line SQL query. Need to run at least one hour with a heavy write workload to reproduce once.