Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ import org.apache.spark.ml.optim.aggregator.HingeAggregator
import org.apache.spark.ml.optim.loss.{L2Regularization, RDDLossFunction}
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.stat.SummaryBuilderImpl._
import org.apache.spark.ml.stat._
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.sql.{Dataset, Row}
Expand Down Expand Up @@ -170,7 +170,7 @@ class LinearSVC @Since("2.2.0") (
regParam, maxIter, fitIntercept, tol, standardization, threshold, aggregationDepth)

val (summarizer, labelSummarizer) = instances.treeAggregate(
(createSummarizerBuffer("mean", "std", "count"), new MultiClassSummarizer))(
(Summarizer.createSummarizerBuffer("mean", "std", "count"), new MultiClassSummarizer))(
seqOp = (c: (SummarizerBuffer, MultiClassSummarizer), instance: Instance) =>
(c._1.add(instance.features, instance.weight), c._2.add(instance.label, instance.weight)),
combOp = (c1: (SummarizerBuffer, MultiClassSummarizer),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ import org.apache.spark.ml.optim.aggregator.LogisticAggregator
import org.apache.spark.ml.optim.loss.{L2Regularization, RDDLossFunction}
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.stat.SummaryBuilderImpl._
import org.apache.spark.ml.stat._
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.evaluation.{BinaryClassificationMetrics, MulticlassMetrics}
Expand Down Expand Up @@ -501,7 +501,7 @@ class LogisticRegression @Since("1.2.0") (
fitIntercept)

val (summarizer, labelSummarizer) = instances.treeAggregate(
(createSummarizerBuffer("mean", "std", "count"), new MultiClassSummarizer))(
(Summarizer.createSummarizerBuffer("mean", "std", "count"), new MultiClassSummarizer))(
seqOp = (c: (SummarizerBuffer, MultiClassSummarizer), instance: Instance) =>
(c._1.add(instance.features, instance.weight), c._2.add(instance.label, instance.weight)),
combOp = (c1: (SummarizerBuffer, MultiClassSummarizer),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg.{BLAS, Vector, Vectors, VectorUDT}
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.stat.SummaryBuilderImpl._
import org.apache.spark.ml.stat._
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.util.MLUtils
Expand Down Expand Up @@ -215,7 +215,7 @@ class AFTSurvivalRegression @Since("1.6.0") (@Since("1.6.0") override val uid: S
if (handlePersistence) instances.persist(StorageLevel.MEMORY_AND_DISK)

val featuresSummarizer = instances.treeAggregate(
createSummarizerBuffer("mean", "std", "count"))(
Summarizer.createSummarizerBuffer("mean", "std", "count"))(
seqOp = (c: SummarizerBuffer, v: AFTPoint) => c.add(v.features),
combOp = (c1: SummarizerBuffer, c2: SummarizerBuffer) => c1.merge(c2),
depth = $(aggregationDepth)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ import org.apache.spark.ml.optim.aggregator.{HuberAggregator, LeastSquaresAggreg
import org.apache.spark.ml.optim.loss.{L2Regularization, RDDLossFunction}
import org.apache.spark.ml.param.{DoubleParam, Param, ParamMap, ParamValidators}
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.stat.SummaryBuilderImpl._
import org.apache.spark.ml.stat._
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.evaluation.RegressionMetrics
Expand Down Expand Up @@ -358,8 +358,8 @@ class LinearRegression @Since("1.3.0") (@Since("1.3.0") override val uid: String
if (handlePersistence) instances.persist(StorageLevel.MEMORY_AND_DISK)

val (featuresSummarizer, ySummarizer) = instances.treeAggregate(
(createSummarizerBuffer("mean", "std"),
createSummarizerBuffer("mean", "std", "count")))(
(Summarizer.createSummarizerBuffer("mean", "std"),
Summarizer.createSummarizerBuffer("mean", "std", "count")))(
seqOp = (c: (SummarizerBuffer, SummarizerBuffer), instance: Instance) =>
(c._1.add(instance.features, instance.weight),
c._2.add(Vectors.dense(instance.label), instance.weight)),
Expand Down
Loading