Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/pyspark-migration-guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ Please refer [Migration Guide: SQL, Datasets and DataFrame](sql-migration-guide.
- Since Spark 3.0, `Column.getItem` is fixed such that it does not call `Column.apply`. Consequently, if `Column` is used as an argument to `getItem`, the indexing operator should be used.
For example, `map_col.getItem(col('id'))` should be replaced with `map_col[col('id')]`.

- As of Spark 3.0 `Row` field names are no longer sorted alphabetically when constructing with named arguments for Python versions 3.6 and above, and the order of fields will match that as entered. To enable sorted fields by default, as in Spark 2.4, set the environment variable `PYSPARK_ROW_FIELD_SORTING_ENABLED` to "true". For Python versions less than 3.6, the field names will be sorted alphabetically as the only option.
- As of Spark 3.0 `Row` field names are no longer sorted alphabetically when constructing with named arguments for Python versions 3.6 and above, and the order of fields will match that as entered. To enable sorted fields by default, as in Spark 2.4, set the environment variable `PYSPARK_ROW_FIELD_SORTING_ENABLED` to "true" for both executors and driver - this environment variable must be consistent on all executors and driver; otherwise, it may cause failures or incorrect answers. For Python versions less than 3.6, the field names will be sorted alphabetically as the only option.

## Upgrading from PySpark 2.3 to 2.4

Expand Down