Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
v1
{"nextBatchWatermarkMs":0}
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"id":"5f1362da-99ce-4ba2-97e1-d992c295e563"}
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
v1
{"batchWatermarkMs":0,"batchTimestampMs":1591241624051,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"5"}}
0
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
v1
{"nextBatchWatermarkMs":0}
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"id":"26fe8d3d-d101-44b0-b9c1-a2f9f09cea69"}
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
v1
{"batchWatermarkMs":0,"batchTimestampMs":1592306585407,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"5"}}
0
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
v1
{"nextBatchWatermarkMs":0}
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"id":"8fc17276-e48b-4e8a-a9c9-31f0045ed860"}
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
v1
{"batchWatermarkMs":0,"batchTimestampMs":1591253127196,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"5"}}
0
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
v1
{"nextBatchWatermarkMs":0}
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"id":"ac9f2680-3a39-4afd-824b-7beefdf7d7a7"}
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
v1
{"batchWatermarkMs":0,"batchTimestampMs":1591234028611,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"5"}}
0
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.streaming

import java.io.File

import org.apache.commons.io.FileUtils

import org.apache.spark.SparkException
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.streaming.InternalOutputModes.Complete
import org.apache.spark.sql.execution.streaming.MemoryStream
import org.apache.spark.sql.functions._
import org.apache.spark.util.Utils

/**
* An integrated test for streaming state store format compatibility.
* For each PR breaks this test, we need to pay attention to the underlying unsafe row format
* changing. All the checkpoint dirs were generated based on Spark version 2.4.5. If we accept the
* changes, it means the checkpoint for Structured Streaming will become non-reusable. Please add
* a new test for the issue, just like the test suite "SPARK-28067 changed the sum decimal unsafe
* row format".
*/
class StreamingStateStoreFormatCompatibilitySuite extends StreamTest {
import testImplicits._

private def prepareCheckpointDir(testName: String): File = {
val resourceUri = this.getClass.getResource("/structured-streaming/" +
s"checkpoint-version-2.4.5-for-compatibility-test-${testName}").toURI
val checkpointDir = Utils.createTempDir().getCanonicalFile
FileUtils.copyDirectory(new File(resourceUri), checkpointDir)
checkpointDir
}

test("common functions") {
val inputData = MemoryStream[Int]
val aggregated =
inputData.toDF().toDF("value")
.selectExpr(
"value",
"value % 5 AS id",
"CAST(value AS STRING) as str",
"CAST(value AS FLOAT) as f",
"CAST(value AS DOUBLE) as d",
"CAST(value AS DECIMAL) as dec",
"value % 3 AS mod",
"named_struct('key', CAST(value AS STRING), 'value', value) AS s")
.groupBy($"id")
.agg(
avg($"value").as("avg_v"),
avg($"f").as("avg_f"),
avg($"d").as("avg_d"),
avg($"dec").as("avg_dec"),
count($"value").as("cnt"),
first($"value").as("first_v"),
first($"s").as("first_s"),
last($"value").as("last_v"),
last($"s").as("last_s"),
min(struct("value", "str")).as("min_struct"),
max($"value").as("max_v"),
sum($"value").as("sum_v"),
sum($"f").as("sum_f"),
sum($"d").as("sum_d"),
// The test for sum decimal broke by SPARK-28067, use separated test for it
// sum($"dec").as("sum_dec"),
collect_list($"value").as("col_list"),
collect_set($"mod").as("col_set"))
.select("id", "avg_v", "avg_f", "avg_d", "avg_dec", "cnt", "first_v", "first_s.value",
"last_v", "last_s.value", "min_struct.value", "max_v", "sum_v", "sum_f", "sum_d",
"col_list", "col_set")

val checkpointDir = prepareCheckpointDir("common-functions")
inputData.addData(0 to 9: _*)

testStream(aggregated, Complete)(
StartStream(checkpointLocation = checkpointDir.getAbsolutePath),
/*
Note: The checkpoint was generated using the following input in Spark version 2.4.5
AddData(inputData, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9),
CheckAnswer(
Row(0, 2.5, 2.5F, 2.5, 2.5000, 2, 0, 0, 5, 5, 0, 5, 5, 5.0, 5.0, Seq(0, 5),
Seq(0, 2)),
Row(1, 3.5, 3.5F, 3.5, 3.5000, 2, 1, 1, 6, 6, 1, 6, 7, 7.0, 7.0, Seq(1, 6),
Seq(0, 1)),
Row(2, 4.5, 4.5F, 4.5, 4.5000, 2, 2, 2, 7, 7, 2, 7, 9, 9.0, 9.0, Seq(2, 7),
Seq(1, 2)),
Row(3, 5.5, 5.5F, 5.5, 5.5000, 2, 3, 3, 8, 8, 3, 8, 11, 11.0, 11.0, Seq(3, 8),
Seq(0, 2)),
Row(4, 6.5, 6.5F, 6.5, 6.5000, 2, 4, 4, 9, 9, 4, 9, 13, 13.0, 13.0, Seq(4, 9),
Seq(0, 1)))
*/
AddData(inputData, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
CheckAnswer(
Row(0, 7.5, 7.5, 7.5, 7.5000, 4, 0, 0, 15, 15, 0, 15, 30, 30.0, 30.0,
Seq(0, 5, 10, 15), Seq(0, 1, 2)),
Row(1, 8.5, 8.5, 8.5, 8.5000, 4, 1, 1, 16, 16, 1, 16, 34, 34.0, 34.0,
Seq(1, 6, 11, 16), Seq(0, 1, 2)),
Row(2, 9.5, 9.5, 9.5, 9.5000, 4, 2, 2, 17, 17, 2, 17, 38, 38.0, 38.0,
Seq(2, 7, 12, 17), Seq(0, 1, 2)),
Row(3, 10.5, 10.5, 10.5, 10.5000, 4, 3, 3, 18, 18, 3, 18, 42, 42.0, 42.0,
Seq(3, 8, 13, 18), Seq(0, 1, 2)),
Row(4, 11.5, 11.5, 11.5, 11.5000, 4, 4, 4, 19, 19, 4, 19, 46, 46.0, 46.0,
Seq(4, 9, 14, 19), Seq(0, 1, 2)))
)
}

test("statistical functions") {
val inputData = MemoryStream[Long]
val aggregated =
inputData.toDF().toDF("value")
.selectExpr(
"value",
"value % 5 AS id",
"CAST(value AS STRING) as str",
"CAST(value AS FLOAT) as f",
"CAST(value AS DOUBLE) as d",
"CAST(value AS DECIMAL) as dec",
"value % 3 AS mod")
.groupBy($"id")
.agg(
kurtosis($"d").as("kts"),
skewness($"d").as("skew"),
approx_count_distinct($"mod").as("approx_cnt"),
approx_count_distinct($"f").as("approx_cnt_f"),
approx_count_distinct($"d").as("approx_cnt_d"),
approx_count_distinct($"dec").as("approx_cnt_dec"),
approx_count_distinct($"str").as("approx_cnt_str"),
stddev_pop($"d").as("stddev_pop"),
stddev_samp($"d").as("stddev_samp"),
var_pop($"d").as("var_pop"),
var_samp($"d").as("var_samp"),
covar_pop($"value", $"mod").as("covar_pop"),
covar_samp($"value", $"mod").as("covar_samp"),
corr($"value", $"mod").as("corr"))
.select("id", "kts", "skew", "approx_cnt", "approx_cnt_f", "approx_cnt_d",
"approx_cnt_dec", "approx_cnt_str", "stddev_pop", "stddev_samp", "var_pop", "var_samp",
"covar_pop", "covar_samp", "corr")

val checkpointDir = prepareCheckpointDir("statistical-functions")
inputData.addData(0L to 9L: _*)

testStream(aggregated, Complete)(
StartStream(checkpointLocation = checkpointDir.getAbsolutePath),
/*
Note: The checkpoint was generated using the following input in Spark version 2.4.5
AddData(inputData, 0L to 9L: _*),
CheckAnswer(
Row(0, -2.0, 0.0, 2, 2, 2, 2, 2, 2.5, 3.5355339059327378, 6.25, 12.5, 2.5, 5.0, 1.0),
Row(1, -2.0, 0.0, 2, 2, 2, 2, 2, 2.5, 3.5355339059327378, 6.25, 12.5, -1.25, -2.5, -1.0),
Row(2, -2.0, 0.0, 2, 2, 2, 2, 2, 2.5, 3.5355339059327378, 6.25, 12.5, -1.25, -2.5, -1.0),
Row(3, -2.0, 0.0, 2, 2, 2, 2, 2, 2.5, 3.5355339059327378, 6.25, 12.5, 2.5, 5.0, 1.0),
Row(4, -2.0, 0.0, 2, 2, 2, 2, 2, 2.5, 3.5355339059327378, 6.25, 12.5, -1.25, -2.5, -1.0))
*/

AddData(inputData, 10L to 19L: _*),
CheckAnswer(
Row(0, -1.36, 0.0, 3, 4, 4, 4, 4, 5.5901699437494745, 6.454972243679028, 31.25,
41.666666666666664, -0.625, -0.8333333333333334, -0.13483997249264842),
Row(1, -1.36, 0.0, 3, 4, 4, 4, 4, 5.5901699437494745, 6.454972243679028, 31.25,
41.666666666666664, 1.25, 1.6666666666666667, 0.31622776601683794),
Row(2, -1.36, 0.0, 3, 4, 4, 4, 4, 5.5901699437494745, 6.454972243679028, 31.25,
41.666666666666664, -0.625, -0.8333333333333334, -0.13483997249264842),
Row(3, -1.36, 0.0, 3, 4, 4, 4, 4, 5.5901699437494745, 6.454972243679028, 31.25,
41.666666666666664, -0.625, -0.8333333333333334, -0.13483997249264842),
Row(4, -1.36, 0.0, 3, 4, 4, 4, 4, 5.5901699437494745, 6.454972243679028, 31.25,
41.666666666666664, 1.25, 1.6666666666666667, 0.31622776601683794))
)
}

test("deduplicate with all columns") {
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cc @maropu @dongjoon-hyun
This new integrated test will return the wrong answer without #28830.

val inputData = MemoryStream[Long]
val result = inputData.toDF().toDF("value")
.selectExpr(
"value",
"value + 10 AS key",
"CAST(value AS STRING) as topic",
"value + 100 AS partition",
"value + 5 AS offset")
.dropDuplicates()
.select("key", "value", "topic", "partition", "offset")

val checkpointDir = prepareCheckpointDir("deduplicate")
inputData.addData(0L, 1L, 2L, 3L, 4L)

testStream(result)(
StartStream(checkpointLocation = checkpointDir.getAbsolutePath),
/*
Note: The checkpoint was generated using the following input in Spark version 2.4.5
AddData(inputData, 0L, 1L, 2L, 3L, 4L),
CheckAnswer(
Row(10, 0, "0", 100, 5),
Row(11, 1, "1", 101, 6),
Row(12, 2, "2", 102, 7),
Row(13, 3, "3", 103, 8),
Row(14, 4, "4", 104, 9))
*/
AddData(inputData, 3L, 4L, 5L, 6L),
CheckLastBatch(
Row(15, 5, "5", 105, 10),
Row(16, 6, "6", 106, 11))
)
}

test("SPARK-28067 changed the sum decimal unsafe row format") {
val inputData = MemoryStream[Int]
val aggregated =
inputData.toDF().toDF("value")
.selectExpr(
"value",
"value % 2 AS id",
"CAST(value AS DECIMAL) as dec")
.groupBy($"id")
.agg(sum($"dec").as("sum_dec"), collect_list($"value").as("col_list"))
.select("id", "sum_dec", "col_list")

val checkpointDir = prepareCheckpointDir("sum-decimal")
inputData.addData(0 to 9: _*)

testStream(aggregated, Complete)(
StartStream(checkpointLocation = checkpointDir.getAbsolutePath),
/*
Note: The checkpoint was generated using the following input in Spark version 2.4.5
AddData(inputData, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9),
CheckAnswer(Row(0, 20, Seq(0, 2, 4, 6, 8)), Row(1, 25, Seq(1, 3, 5, 7, 9)))
*/
AddData(inputData, 10 to 19: _*),
ExpectFailure[SparkException](e => {
// Check the exception message to make sure the state store format changing.
assert(e.getCause.getCause.getMessage.contains(
"The streaming query failed by state format invalidation."))
})
)
}
}