Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 11 additions & 1 deletion python/pyspark/sql/connect/conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,9 @@ def convert_struct(value: Any) -> Any:
if value is None:
return None
else:
assert isinstance(value, (tuple, dict)), f"{type(value)} {value}"
assert isinstance(value, (tuple, dict)) or hasattr(
value, "__dict__"
), f"{type(value)} {value}"

_dict = {}
if isinstance(value, dict):
Expand All @@ -116,6 +118,10 @@ def convert_struct(value: Any) -> Any:
for k, v in value.asDict(recursive=False).items():
assert isinstance(k, str)
_dict[k] = field_convs[k](v)
elif not isinstance(value, Row) and hasattr(value, "__dict__"):
for k, v in value.__dict__.items():
assert isinstance(k, str)
_dict[k] = field_convs[k](v)
else:
i = 0
for v in value:
Expand Down Expand Up @@ -253,6 +259,10 @@ def convert(data: Sequence[Any], schema: StructType) -> "pa.Table":
elif isinstance(item, Row) and hasattr(item, "__fields__"):
for col, value in item.asDict(recursive=False).items():
_dict[col] = column_convs[col](value)
elif not isinstance(item, Row) and hasattr(item, "__dict__"):
for col, value in item.__dict__.items():
print(col, value)
_dict[col] = column_convs[col](value)
else:
i = 0
for value in item:
Expand Down
4 changes: 3 additions & 1 deletion python/pyspark/sql/connect/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,7 +294,9 @@ def createDataFrame(
# For dictionaries, we sort the schema in alphabetical order.
_data = [dict(sorted(d.items())) for d in _data]

elif not isinstance(_data[0], (Row, tuple, list, dict)):
elif not isinstance(_data[0], (Row, tuple, list, dict)) and not hasattr(
_data[0], "__dict__"
):
# input data can be [1, 2, 3]
# we need to convert it to [[1], [2], [3]] to be able to infer schema.
_data = [[d] for d in _data]
Expand Down
17 changes: 17 additions & 0 deletions python/pyspark/sql/tests/connect/test_connect_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
)

from pyspark.testing.sqlutils import (
MyObject,
SQLTestUtils,
PythonOnlyUDT,
ExamplePoint,
Expand Down Expand Up @@ -840,6 +841,22 @@ def test_nested_type_create_from_rows(self):
self.assertEqual(cdf.schema, sdf.schema)
self.assertEqual(cdf.collect(), sdf.collect())

def test_create_df_from_objects(self):
data = [MyObject(1, "1"), MyObject(2, "2")]

# +---+-----+
# |key|value|
# +---+-----+
# | 1| 1|
# | 2| 2|
# +---+-----+

cdf = self.connect.createDataFrame(data)
sdf = self.spark.createDataFrame(data)

self.assertEqual(cdf.schema, sdf.schema)
self.assertEqual(cdf.collect(), sdf.collect())

def test_simple_explain_string(self):
df = self.connect.read.table(self.tbl_name).limit(10)
result = df._explain_string()
Expand Down
5 changes: 0 additions & 5 deletions python/pyspark/sql/tests/connect/test_parity_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,11 +54,6 @@ def test_cast_to_udt_with_udt(self):
def test_complex_nested_udt_in_df(self):
super().test_complex_nested_udt_in_df()

# TODO(SPARK-42020): createDataFrame with UDT
@unittest.skip("Fails in Spark Connect, should enable.")
def test_create_dataframe_from_objects(self):
super().test_create_dataframe_from_objects()

@unittest.skip("Spark Connect does not support RDD but the tests depend on them.")
def test_create_dataframe_schema_mismatch(self):
super().test_create_dataframe_schema_mismatch()
Expand Down