-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[CUDA][PASS]Legalize tensorcore (#7147)
* add pad_to_tensorcore & legalize for dense/bmm/conv2d * fix pad & slice * fix comments * fix comments * resolve conflict * resolve conflict * support only fp16 * add tests/python/relay/test_pass_legalize_tensorcore.py * add tests for legalize tensorcore * fix pylint * fix pylint * code format * use_gpu test only; fix conv2d_alter_op * fix tests params * revert transform fix
- Loading branch information
Showing
7 changed files
with
582 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name,unused-variable,unused-argument | ||
"""Tensorcore alter op and legalize functions for cuda backend""" | ||
|
||
import logging | ||
import math | ||
from tvm import relay | ||
|
||
from .. import nn | ||
|
||
logger = logging.getLogger("topi") | ||
|
||
|
||
@nn.batch_matmul_legalize.register("cuda") | ||
def _batch_matmul_legalize(attrs, inputs, arg_types): | ||
"""Legalizes batch_matmul op. | ||
Parameters | ||
---------- | ||
attrs : tvm.ir.Attrs | ||
Attributes of current convolution | ||
inputs : list of tvm.relay.Expr | ||
The args of the Relay expr to be legalized | ||
arg_types : list of types | ||
List of input and output types | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The legalized expr | ||
""" | ||
# Collect the input tensors. | ||
x_tensor, y_tensor = arg_types[0], arg_types[1] | ||
dtype = x_tensor.dtype | ||
|
||
# Collect the output tensor. | ||
output_tensor = arg_types[2] | ||
|
||
# Collect the input exprs. | ||
x, y = inputs | ||
|
||
# Pad input and output channels to use tensorcore schedule. | ||
if dtype in ["float16"]: # todo: support int8/int4 | ||
B, M, K = x_tensor.shape | ||
B, N, K = y_tensor.shape | ||
M = M.value | ||
K = K.value | ||
N = N.value | ||
|
||
# The shape of (M, K, N) must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) | ||
if ( | ||
(M % 8 == 0 and K % 16 == 0 and N % 32 == 0) | ||
or (M % 16 == 0 and K % 16 == 0 and N % 16 == 0) | ||
or (M % 32 == 0 and K % 16 == 0 and N % 8 == 0) | ||
): | ||
# no need to pad | ||
return None | ||
|
||
(dm, dk, dn), extra_flops = pad_to_tensorcore(M, K, N) | ||
|
||
if extra_flops > 2: | ||
logger.info("batch_matmul pad_to_tensorcore skipped, extra_flops %s", extra_flops) | ||
return None | ||
|
||
logger.info("batch_matmul pad_to_tensorcore, extra_flops %s", extra_flops) | ||
if dm or dk: | ||
x_ = relay.nn.pad(x, pad_width=((0, 0), (0, dm), (0, dk))) | ||
else: | ||
x_ = x | ||
if dn or dk: | ||
y_ = relay.nn.pad(y, pad_width=((0, 0), (0, dn), (0, dk))) | ||
else: | ||
y_ = y | ||
out_ = relay.nn.batch_matmul(x_, y_) | ||
if dm or dn: | ||
original_out_shape = [x.value for x in output_tensor.shape] | ||
out = relay.strided_slice(out_, begin=[0, 0, 0], end=original_out_shape) | ||
else: | ||
out = out_ | ||
return out | ||
return None | ||
|
||
|
||
@nn.dense_legalize.register("cuda") | ||
def _dense_legalize(attrs, inputs, arg_types): | ||
"""Legalizes dense op. | ||
Parameters | ||
---------- | ||
attrs : tvm.ir.Attrs | ||
Attributes of current convolution | ||
inputs : list of tvm.relay.Expr | ||
The args of the Relay expr to be legalized | ||
types : list of types | ||
List of input and output types | ||
Returns | ||
------- | ||
result : tvm.relay.Expr | ||
The legalized expr | ||
""" | ||
# Collect the input tensors. | ||
x_tensor, y_tensor = arg_types[0], arg_types[1] | ||
dtype = x_tensor.dtype | ||
|
||
# Collect the output tensor. | ||
output_tensor = arg_types[2] | ||
|
||
# Collect the input exprs. | ||
x, y = inputs | ||
|
||
# Pad input and output channels to use tensorcore schedule. | ||
if dtype in ["float16"]: # todo: support int8/int4 | ||
M, K = x_tensor.shape | ||
N, K = y_tensor.shape | ||
try: | ||
M = M.value | ||
K = K.value | ||
N = N.value | ||
except AttributeError: | ||
# todo: deal with unfixed shape when compiling wdl model | ||
return None | ||
|
||
# The shape of (M, K, N) must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) | ||
if ( | ||
(M % 8 == 0 and K % 16 == 0 and N % 32 == 0) | ||
or (M % 16 == 0 and K % 16 == 0 and N % 16 == 0) | ||
or (M % 32 == 0 and K % 16 == 0 and N % 8 == 0) | ||
): | ||
# no need to pad | ||
return None | ||
|
||
(dm, dk, dn), extra_flops_ratio = pad_to_tensorcore(M, K, N) | ||
|
||
if extra_flops_ratio > 2: | ||
logger.info("dense pad_to_tensorcore skipped, extra_flops_ratio %s", extra_flops_ratio) | ||
return None | ||
|
||
logger.info("dense pad_to_tensorcore, extra_flops_ratio %s", extra_flops_ratio) | ||
|
||
if dm or dk: | ||
x_ = relay.nn.pad(x, pad_width=((0, dm), (0, dk))) | ||
else: | ||
x_ = x | ||
if dn or dk: | ||
y_ = relay.nn.pad(y, pad_width=((0, dn), (0, dk))) | ||
else: | ||
y_ = y | ||
out_ = relay.nn.dense(x_, y_) | ||
if dm or dn: | ||
original_out_shape = [x.value for x in output_tensor.shape] | ||
out = relay.strided_slice(out_, begin=[0, 0], end=original_out_shape) | ||
else: | ||
out = out_ | ||
return out | ||
return None | ||
|
||
|
||
def pad_to_tensorcore(M, K, N): | ||
"""pad shape to enable tensorcore""" | ||
candidates = [(16, 16, 16), (32, 16, 8), (8, 16, 32)] | ||
|
||
flops = M * K * N | ||
extra_flops = math.inf | ||
best_pad = (0, 0, 0) | ||
for padding in candidates: | ||
dm, dk, dn = _pad_to(M, K, N, padding) | ||
e = (M + dm) * (N + dn) * (K + dk) - M * N * K | ||
# print(dm, dk, dn, e, flops) | ||
if e < extra_flops: | ||
extra_flops = e | ||
best_pad = (dm, dk, dn) | ||
return best_pad, extra_flops / flops | ||
|
||
|
||
def _pad_to(M, K, N, PADDING): | ||
dm, dk, dn = 0, 0, 0 | ||
|
||
if M % PADDING[0] != 0: | ||
M_ = ((M + PADDING[0]) // PADDING[0]) * PADDING[0] | ||
dm = M_ - M | ||
if K % PADDING[1] != 0: | ||
K_ = ((K + PADDING[1]) // PADDING[1]) * PADDING[1] | ||
dk = K_ - K | ||
if N % PADDING[2] != 0: | ||
N_ = ((N + PADDING[2]) // PADDING[2]) * PADDING[2] | ||
dn = N_ - N | ||
|
||
return dm, dk, dn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.