Skip to content

Commit

Permalink
[Relay] Support for PyTorch Non-Maximum Suppression (#6314)
Browse files Browse the repository at this point in the history
* [Relay] Support for PyTorch Non-Maximum Suppression

* fix comment

* add verify_model_vm
  • Loading branch information
yongwww authored Aug 24, 2020
1 parent b1f8f15 commit 37cbbd7
Show file tree
Hide file tree
Showing 2 changed files with 97 additions and 12 deletions.
50 changes: 49 additions & 1 deletion python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
from ..ty import TupleType, TensorType, Any
from ..loops import while_loop
from .. import transform
from .common import get_relay_op
from .common import AttrCvt, get_relay_op
from .common import infer_shape as _infer_shape
from .common import infer_value as _infer_value
from .common import infer_value_simulated as _infer_value_simulated
Expand Down Expand Up @@ -1811,6 +1811,53 @@ def _impl(inputs, input_types):
return _op.meshgrid(data, indexing="ij")
return _impl


def _nms(prelude):
def _impl(inputs, input_types):
boxes = inputs[0]
scores = inputs[1]
iou_threshold = inputs[2]

# Generate data with shape (1, num_anchors, 5)
scores = AttrCvt(op_name="expand_dims",
extras={'axis': -1, 'num_newaxis': 1})([scores], {})

# Prepare input data for get_valid_counts
data = _op.concatenate([scores, boxes], -1)
data = _op.expand_dims(data, 0, 1)
# Leverage get_valid_counts to sort the data and clear invalid boxes
ct, data, indices = get_relay_op('get_valid_counts')(data,
score_threshold=-1.0,
id_index=-1,
score_index=0)

# Perform Non-Maximum Suppression,
# PyTorch NMS doesn't have parameter top_k and max_output_size
score_index = 0
top_k = max_out_size = -1
nms_ret = get_relay_op('non_max_suppression')(data=data,
valid_count=ct,
indices=indices,
max_output_size=max_out_size,
iou_threshold=iou_threshold,
force_suppress=True,
top_k=top_k,
coord_start=1,
score_index=score_index,
id_index=-1,
return_indices=True,
invalid_to_bottom=False)

# squeeze the two outputs of nms for strided_slice
size = get_relay_op("squeeze")(nms_ret[1], axis=[1])
data_slice = get_relay_op("squeeze")(nms_ret[0], axis=[0])

# strided slice to get the dynamic result
return get_relay_op("strided_slice")(data_slice, begin=_expr.const([0]),
end=size, slice_mode="size")
return _impl


def _pytorch_result_type(dtypes, non_tensor_inputs):
"""This promotes TVM dtypes like PyTorch would"""
import torch
Expand Down Expand Up @@ -2111,6 +2158,7 @@ def _get_convert_map(prelude):
"aten::gather" : _gather(),
"aten::index_select" : _select(),
"aten::index" : _index(),
"torchvision::nms" : _nms(prelude),
}
return convert_map

Expand Down
59 changes: 48 additions & 11 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1428,6 +1428,31 @@ def test_forward_upsample3d():
verify_model(torch.nn.Upsample(scale_factor=2, mode='trilinear', align_corners=True).eval(), inp)


def test_forward_nms():
"""dynamic Non-Maximum Suppression"""
torch.set_grad_enabled(False)
class NonMaxSupression(Module):
def __init__(self, iou_thres):
super().__init__()
self.iou_threshold = iou_thres

def forward(self, *args):
return torchvision.ops.nms(args[0], args[1], self.iou_threshold)

# Generate random input data
def _gen_rand_inputs(num_boxes):
box_len = 4
boxes = torch.rand(num_boxes, box_len, dtype=torch.float) * 0.5
boxes[:, 2] += boxes[:, 0]
boxes[:, 3] += boxes[:, 1]
scores = torch.rand(num_boxes, dtype=torch.float)
return boxes, scores

for num_boxes, iou_thres in [(10, 0.3), (100, 0.5), (500, 0.9)]:
in_boxes, in_scores = _gen_rand_inputs(num_boxes)
verify_trace_model(NonMaxSupression(iou_thres), [in_boxes, in_scores])


def test_conv3d():
for ishape in [(1, 32, 16, 16, 16),
(1, 32, 9, 15, 15),
Expand Down Expand Up @@ -1577,32 +1602,43 @@ def test_3d_models():

def verify_script_model(pt_model, ishapes):
script_module = torch.jit.script(pt_model)
verify_model_vm(script_module, ishapes)

input_names = ["i{}".format(idx) for idx, ish in enumerate(ishapes)]
input_shapes = list(zip(input_names, ishapes))

inputs = [torch.randn(shape, dtype=torch.float)
for shape in ishapes]
def verify_trace_model(pt_model, idata):
traced_model = torch.jit.trace(pt_model, idata)
ishapes = [data.shape for data in idata]
verify_model_vm(traced_model, ishapes, idata=idata)

mod, params = relay.frontend.from_pytorch(script_module, input_shapes)

def verify_model_vm(imodel, ishapes, idtype=torch.float, idata=None):
input_model = imodel
input_names = ["i{}".format(idx) for idx, ish in enumerate(ishapes)]
input_shapes = list(zip(input_names, ishapes))
input_data = idata if idata else [torch.randn(shape, dtype=idtype)
for shape in ishapes]
# Compile via VM
mod, params = relay.frontend.from_pytorch(input_model, input_shapes)

executor = relay.create_executor("vm", mod=mod, ctx=tvm.cpu(0),
target="llvm")
evaluator = executor.evaluate()

for name, inp in zip(input_names, inputs):
# Inference
for name, inp in zip(input_names, input_data):
params[name] = inp.numpy()
vm_res = evaluator(**params)

op_res = evaluator(**params)

# Baseline result
with torch.no_grad():
pt_result = pt_model(*inputs)
pt_result = input_model(*input_data)

# Verify the accuracy
if not isinstance(pt_result, torch.Tensor):
tvm_res = op_res.asnumpy().item()
tvm_res = vm_res.asnumpy().item()
assert pt_result == tvm_res
else:
tvm.testing.assert_allclose(op_res.asnumpy(), pt_result.numpy(),
tvm.testing.assert_allclose(vm_res.asnumpy(), pt_result.numpy(),
rtol=1e-5, atol=1e-5)


Expand Down Expand Up @@ -2863,6 +2899,7 @@ def test_forward_pretrained_bert_base_uncased():
test_forward_gather()
test_upsample()
test_forward_upsample3d()
test_forward_nms()
test_to()
test_type_as()
test_forward_functional_pad()
Expand Down

0 comments on commit 37cbbd7

Please sign in to comment.