Skip to content

Commit

Permalink
to #24765941 fix lint
Browse files Browse the repository at this point in the history
  • Loading branch information
yunjing.lh committed Mar 16, 2020
1 parent adfdd30 commit 3dfc1f9
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 17 deletions.
27 changes: 13 additions & 14 deletions src/relay/qnn/op/add.cc
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
float real_lhs_scale_val = lhs_scale_val / twice_max_input_scale * (1 << 20);
float real_rhs_scale_val = rhs_scale_val / twice_max_input_scale * (1 << 20);
float real_out_scale_val = twice_max_input_scale / ((1 << 20) * out_scale_val);

auto real_lhs_scale = MakeConstantScalar<float>(
DataType::Float(32), real_lhs_scale_val);
auto real_rhs_scale = MakeConstantScalar<float>(
Expand All @@ -97,14 +97,14 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
itmd_out_scale, output_zero_point,
DataType::Int(32), rounding);
} else {
// FIXME (anijain2305) - The lowering can be further optimized. Instead of inserting requantize in
// the start, we can insert requantize at the end if both input tensors have same qnn params. In
// that case, we can first add the tensors, subtract the zero point, and requantize at the end.
// This can be done in future.
// FIXME (anijain2305) - The lowering can be further optimized. Instead of inserting requantize
// in the start, we can insert requantize at the end if both input tensors have same qnn params.
// In that case, we can first add the tensors, subtract the zero point, and requantize at the
// end. This can be done in future.

// Since the input qnn params can be different than output qnn params, we first requantize the
// input tensors to the output qnn params. Then we call relay.add on the requantized inputs. This
// addition results in extra addition of the output zero point. We futher subtract the zero
// input tensors to the output qnn params. Then we call relay.add on the requantized inputs.
// This addition results in extra addition of the output zero point. We futher subtract the zero
// point. The whole process can be represented using following equations
//
// scale_c * (Q_c - zp_c) = scale_a * (Q_a - zp_a) + scale_b * (Q_b - zp_b)
Expand All @@ -116,7 +116,7 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
// Comparing the LHS and RHS, it results in
// Q_c = Q_a' + Q_b' - zp_c
// The add op is done in int32 precision.

// Requantize LHS if necessary.
auto requantized_lhs = lhs;
if (!IsEqualScalar(lhs_scale, output_scale) ||
Expand All @@ -126,7 +126,7 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
} else {
requantized_lhs = Cast(requantized_lhs, DataType::Int(32));
}

// Requantize RHS if necessary.
auto requantized_rhs = rhs;
if (!IsEqualScalar(rhs_scale, output_scale) ||
Expand All @@ -138,28 +138,27 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
}

output = Add(requantized_lhs, requantized_rhs);

// Subtract zero point.
auto zero_scalar = MakeConstantScalar(DataType::Int(32), 0);
if (!IsEqualScalar(output_zero_point, zero_scalar)) {
output = Subtract(output, output_zero_point);
}
}

// Go back to lower precision.
auto q_min = GetQmin(input_dtype);
auto q_max = GetQmax(input_dtype);
output = Clip(output, q_min, q_max);
return Cast(output, input_dtype);

}

Expr MakeQnnAdd(Expr lhs, Expr rhs, Expr lhs_scale, Expr lhs_zero_point,
Expr rhs_scale, Expr rhs_zero_point, Expr output_scale,
Expr output_zero_point, std::string rounding) {
auto attrs = make_object<QnnAddAttrs>();
attrs->rounding = std::move(rounding);

static const Op& op = Op::Get("qnn.add");
return CallNode::make(op, {lhs, rhs,
lhs_scale, lhs_zero_point,
Expand Down
6 changes: 3 additions & 3 deletions topi/include/topi/nn/pooling.h
Original file line number Diff line number Diff line change
Expand Up @@ -578,7 +578,7 @@ inline Tensor adaptive_pool_impl(const Tensor& x,
Array<PrimExpr> indices;
Array<tir::IterVar> reduce_axes;
std::tie(indices, reduce_axes) = get_iter_vars(output, false);

PrimExpr divide_factor = tvm::cast(x->dtype, 1);
for (size_t i = 0; i < n_dim; ++i) {
divide_factor *= tvm::cast(x->dtype, reduce_axes[i]->dom->extent);
Expand All @@ -592,12 +592,12 @@ inline Tensor adaptive_pool_impl(const Tensor& x,
Array<PrimExpr> indices;
Array<tir::IterVar> reduce_axes;
std::tie(indices, reduce_axes) = get_iter_vars(output, false);

PrimExpr divide_factor = tvm::cast(x->dtype, 1);
for (size_t i = 0; i < n_dim; ++i) {
divide_factor *= tvm::cast(x->dtype, reduce_axes[i]->dom->extent);
}

return div(pool_sum(indices), divide_factor);
}, "tensor", kElementWise);
}
Expand Down

0 comments on commit 3dfc1f9

Please sign in to comment.