-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Qnn Dense layer. * Reformatting code. * Reformatting code and making the test case more readable. * Fixing lint issues. * Fixing test method names to pass the nose related configurations. * Aligning the code for code style.
- Loading branch information
Showing
9 changed files
with
443 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file src/relay/qnn/op/dense.cc | ||
* \brief Property def of qnn dense operator. | ||
*/ | ||
|
||
#include <tvm/relay/base.h> | ||
#include <tvm/relay/op.h> | ||
#include <tvm/relay/op_attr_types.h> | ||
#include <tvm/relay/qnn/attrs.h> | ||
#include "../../op/nn/nn.h" | ||
#include "../../pass/pattern_util.h" | ||
|
||
namespace tvm { | ||
namespace relay { | ||
namespace qnn { | ||
|
||
// relay.op.qnn.dense | ||
TVM_REGISTER_NODE_TYPE(QnnDenseAttrs); | ||
|
||
bool QnnDenseRel(const Array<Type>& types, | ||
int num_inputs, | ||
const Attrs& attrs, | ||
const TypeReporter& reporter) { | ||
CHECK_EQ(types.size(), 3); | ||
const auto* data = types[0].as<TensorTypeNode>(); | ||
const auto* weight = types[1].as<TensorTypeNode>(); | ||
if (data == nullptr || weight == nullptr) return false; | ||
const auto* param = attrs.as<QnnDenseAttrs>(); | ||
CHECK(param != nullptr) << "QnnConv2DAttrs cannot be nullptr."; | ||
CHECK(data->dtype == Int(8) || data->dtype == UInt(8)) | ||
<< "Expected quantized dense type(int8, uint8) for input but was " << data->dtype; | ||
CHECK(weight->dtype == Int(8) || weight->dtype == UInt(8)) | ||
<< "Expected quantized dense type(int8, uint8) for weight but was " << weight->dtype; | ||
CHECK(param->out_dtype == Int(32)) | ||
<< "Expected quantized dense type(int32) for output but was " << param->out_dtype; | ||
CHECK(param->out_dtype.bits() > 0) << "Output dtype bits should be greater than 0."; | ||
return DenseRel<QnnDenseAttrs>(types, num_inputs, attrs, reporter); | ||
} | ||
|
||
// Positional relay function to create quantized dense operator used by frontend FFI. | ||
Expr MakeQuantizedDense(Expr data, | ||
Expr weight, | ||
IndexExpr units, | ||
int32_t input_zero_point, | ||
int32_t kernel_zero_point, | ||
DataType out_dtype) { | ||
auto attrs = make_node<QnnDenseAttrs>(); | ||
attrs->units = std::move(units); | ||
attrs->out_dtype = out_dtype; | ||
attrs->input_zero_point = input_zero_point; | ||
attrs->kernel_zero_point = kernel_zero_point; | ||
static const Op& op = Op::Get("qnn.dense"); | ||
return CallNode::make(op, {data, weight}, Attrs(attrs), {}); | ||
} | ||
|
||
/** | ||
* \brief Lowers Qnn convolution in terms of core operators in relay. | ||
* Mathematically it is equals to - | ||
* Dense((quantized_input - input_zero_point;int32), (quantized_kernel - kernel_zero_point; int32)) | ||
* | ||
* \param attrs QnnDenseAttrs for Qnn Dense layer. | ||
* \param new_args The new mutated args to the call node. | ||
* \param arg_types The data types of input and output. | ||
* \reutrn The sequence of Relay ops for qnn cov2d op. | ||
*/ | ||
Expr QnnDenseCanonicalize(const Attrs& attrs, | ||
const Array<Expr>& new_args, | ||
const Array<tvm::relay::Type>& arg_types) { | ||
CHECK_EQ(new_args.size(), 2); | ||
Expr quantized_data = new_args[0]; | ||
Expr quantized_kernel = new_args[1]; | ||
const auto* qnn_dense_attrs = attrs.as<QnnDenseAttrs>(); | ||
Expr quantized_data_int32 = Cast(quantized_data, Int(32)); | ||
if (qnn_dense_attrs->input_zero_point != 0) { | ||
quantized_data_int32 = Subtract(quantized_data_int32, | ||
MakeConstantScalar(Int(32), | ||
qnn_dense_attrs->input_zero_point)); | ||
} | ||
Expr quantized_kernel_int32 = Cast(quantized_kernel, Int(32)); | ||
if (qnn_dense_attrs->kernel_zero_point != 0) { | ||
quantized_kernel_int32 = Subtract(quantized_kernel_int32, | ||
MakeConstantScalar(Int(32), | ||
qnn_dense_attrs->kernel_zero_point)); | ||
} | ||
Expr int32_dense = Dense(quantized_data_int32, | ||
quantized_kernel_int32, | ||
qnn_dense_attrs->units, | ||
qnn_dense_attrs->out_dtype); | ||
return int32_dense; | ||
} | ||
|
||
RELAY_REGISTER_OP("qnn.dense") | ||
.describe(R"code(Applies a linear transformation: :math:`Y = XW^T`. | ||
- **data**: quantized(int8, unit8) `(x1, x2, ..., xn, input_dim)` | ||
- **weight**: quantized(int8, unit8) `(units, input_dim)` | ||
- **out**: quantized(int32) `(x1, x2, ..., xn, units)`. | ||
)code" TVM_ADD_FILELINE) | ||
.set_attrs_type_key("relay.attrs.qnn.QnnDenseAttrs") | ||
.set_num_inputs(2) | ||
.add_argument("data", "quantized nD Tensor", "Input data.") | ||
.add_argument("weight", "quantized 2D Tensor", "Weight matrix.") | ||
.set_support_level(11) | ||
.add_type_rel("QDense", DenseRel<QnnDenseAttrs>) | ||
.set_attr<FTVMLegalize>("FTVMQnnCanonicalize", QnnDenseCanonicalize); | ||
|
||
TVM_REGISTER_API("relay.qnn.op._make.dense") | ||
.set_body_typed(MakeQuantizedDense); | ||
|
||
} // namespace qnn | ||
} // namespace relay | ||
} // namespace tvm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.