Skip to content

Commit

Permalink
Added tesnorizeation for avx2 based gemm.
Browse files Browse the repository at this point in the history
Summary:
Tensorized the same region as avx512. Names produce 16x1 int32 results.
Does by doing two sets of AVX2 instructions to do reduction on 8x4 int8
kernel with 1x4 data.

Test Plan:
on avx2 machine:
python tests/python/contrib/test_gemm_avx2_acc32.py

Reviewers:

Subscribers:

Tasks:

Tags:
  • Loading branch information
kimishpatel committed Sep 22, 2019
1 parent 1fe17d1 commit 5c61a2c
Show file tree
Hide file tree
Showing 2 changed files with 192 additions and 0 deletions.
98 changes: 98 additions & 0 deletions tests/python/contrib/test_gemm_avx2_acc32.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition

import tvm
import numpy as np
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32_vnni
from topi.x86.tensor_intrin import dot_1x4x16_int8_int8_int32_avx2


def test_avx2_int8_gemm_acc32():
m = 1024
n = 1024
k = 1024

X = tvm.placeholder((m, k), name='X', dtype="uint8")
W = tvm.placeholder((n, k), name='W', dtype="int8")

#peak = 280 // This needs measurement and description of what this number is for avx2 machine.
#print("Peak {} Gops/s".format(peak))
memory_ops = m * k + n * k + 2 * m * n
gops_per_mm = 2 * m * n * k

def verify(target="llvm -mcpu=core-avx2"):
if not tvm.module.enabled(target):
print("skip because %s is not enabled..." % target)
return

ctx = tvm.context(target, 0)
pc = dot_1x4x16_int8_int8_int32_avx2()
ak = tvm.reduce_axis((0, k), name='k')
packedW = tvm.placeholder(
(n // 16, 16 * (k // 4), 4), name='packedW', dtype="int8")

t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype(
"int32") * packedW[j // 16, (ak // 4) * 16 + j % 16, ak % 4].astype("int32"), axis=ak), name="F")
t_sch = tvm.create_schedule(t_fc.op)
a_x, a_y = t_fc.op.axis
a_k, = t_fc.op.reduce_axis

a_yo, a_yi = t_sch[t_fc].split(a_y, factor=16)
a_xo, a_xi = t_sch[t_fc].split(a_x, factor=32)
a_ko, a_ki = t_sch[t_fc].split(a_k, factor=4)
a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=4)
t_sch[t_fc].reorder(a_yo, a_xo, a_xi, a_koo, a_koi, a_yi, a_ki)

t_sch[t_fc].unroll(a_koi)
t_sch[t_fc].tensorize(a_yi, pc)

t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic")
t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10)

# generate the plain data
a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8")
b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8")

packW = np.random.uniform(1, 10, size=(
n // 16, 16 * (k // 4), 4)).astype("int8")
# This occurs in pre_compute stage
for r_idx in range(n // 16):
for s_idx in range(16 * (k // 4)):
for t_idx in range(4):
packW[r_idx][s_idx][t_idx] = b_[r_idx * 16 + s_idx %
16][(s_idx // 16) * 4 + t_idx]

x = tvm.nd.array(a_, ctx)
w = tvm.nd.array(packW, ctx)
y = tvm.nd.array(np.zeros((m, n), dtype="int32"), ctx)
result = t_evaluator(x, w, y)

gops_per_sec = gops_per_mm / result.mean / 1e9
# verify the correctness
tvm.testing.assert_allclose(y.asnumpy(), np.dot(a_, b_.T), rtol=0)
#print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s, effiency: {:.2f}'.format(
# result.mean * 1000, gops_per_sec, gops_per_sec / peak))
print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s'.format(
result.mean * 1000, gops_per_sec))

verify()


if __name__ == "__main__":
test_avx2_int8_gemm_acc32()
pass
94 changes: 94 additions & 0 deletions topi/python/topi/x86/tensor_intrin.py
Original file line number Diff line number Diff line change
Expand Up @@ -275,3 +275,97 @@ def _instr(index):

with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})


def dot_1x4x16_int8_int8_int32_avx2():
"""
Int8 dot product by every 4 elements using x86 AVX2 instructions.
This function takes two arrays of int8 datatype -- data[4] and
kernel[16][4] -- and computes a dot product of data[4] with every
4 elements of kernels, resulting in output[16] of int32 datatype.
The pseudo code is as follows.
.. code-block:: c
void dot_1x4x16_int8_int8_int32(int8 data[4], int8 kernel[16][4],
int32 output[16]){
for (int i = 0; i < 16; i++){
out[i] = 0;
for (int k = 0; k < 4; k++){
out[i] += data[k] * kernel[i][k]
}
}
}
Physically, the kernel array sits in two AVX2 vector registers and
the data[4] is broadcasted to AVX2 vector register. This
function returns a TensorIntrin that can be used to tensorize
a schedule.
Returns
-------
intrin : TensorIntrin
The AVX2 int8 TensorIntrin that can be used in tensorizing schedule
"""

int32_lanes = 16 # 16 int32 lanes in AVX2
num_int8_elements = 4 # 4 int8 elements in int32
data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data')
kernel = tvm.placeholder((int32_lanes, num_int8_elements), dtype='int8', name='kernel')
k = tvm.reduce_axis((0, num_int8_elements), name='k')
C = tvm.compute((int32_lanes,),
lambda i: tvm.sum(data[k].astype('int32') *
kernel[i, k].astype('int32'),
axis=k),
name="C")

a_buffer = tvm.decl_buffer(data.shape, dtype='uint8', name="a_buffer",
offset_factor=1,
strides=[1])
b_buffer = tvm.decl_buffer(kernel.shape, dtype='int8', name="b_buffer",
offset_factor=1,
strides=[tvm.var('ldw'), 1])

def _intrin_func(ins, outs):
def _instr(index):
ib = tvm.ir_builder.create()
if index == 1:
ib.emit(outs[0].vstore(0, tvm.const(0, 'int32x16')))
return ib.get()

a_int8 = ins[0].vload([0], "uint8x4")
re_int32 = tvm.call_pure_intrin('int32', 'reinterpret', a_int8)
vec_ai32 = re_int32.astype('int32x8')
vec_a = tvm.call_pure_intrin('int8x32', 'reinterpret', vec_ai32)
vec_b_0 = ins[1].vload([0, 0], "int8x32")
vec_b_1 = ins[1].vload([8, 0], "int8x32")
vec_one = tvm.const(1, "int16x16")
pair_reduction_0 = tvm.call_llvm_intrin('int16x16',
'llvm.x86.avx2.pmadd.ub.sw',
tvm.const(0, 'uint32'),
vec_a, vec_b_0)
quad_reduction_0 = tvm.call_llvm_intrin('int32x8',
'llvm.x86.avx2.pmadd.wd',
tvm.const(0, 'uint32'),
pair_reduction_0, vec_one)
pair_reduction_1 = tvm.call_llvm_intrin('int16x16',
'llvm.x86.avx2.pmadd.ub.sw',
tvm.const(0, 'uint32'),
vec_a, vec_b_1)
quad_reduction_1 = tvm.call_llvm_intrin('int32x8',
'llvm.x86.avx2.pmadd.wd',
tvm.const(0, 'uint32'),
pair_reduction_1, vec_one)
if index == 0:
ib.emit(outs[0].vstore([0], quad_reduction_0))
ib.emit(outs[0].vstore([8], quad_reduction_1))
else:
ib.emit(outs[0].vstore([0], quad_reduction_0 + \
outs[0].vload([0], 'int32x8')))
ib.emit(outs[0].vstore([8], quad_reduction_1 + \
outs[0].vload([8], 'int32x8')))
return ib.get()

# body, reset, update
return _instr(0), _instr(1), _instr(2)

with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})

0 comments on commit 5c61a2c

Please sign in to comment.