-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
536137a
commit 83e05ac
Showing
4 changed files
with
126 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Example code to do convolution.""" | ||
|
||
import numpy as np | ||
import tvm | ||
from tvm import autotvm | ||
import topi | ||
import topi.testing | ||
from tvm.contrib.pickle_memoize import memoize | ||
from topi.util import get_const_tuple | ||
|
||
from common import get_all_backend | ||
|
||
def verify_conv3d_ncdhw(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False): | ||
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation)) | ||
|
||
in_depth = in_height = in_width = in_size | ||
|
||
A = tvm.placeholder((batch, in_channel, in_depth, in_height, in_width), name='A') | ||
W = tvm.placeholder((num_filter, in_channel, kernel, kernel, kernel), name='W') | ||
bias = tvm.placeholder((num_filter, 1, 1, 1), name='bias') | ||
|
||
a_shape = get_const_tuple(A.shape) | ||
w_shape = get_const_tuple(W.shape) | ||
bias_shape = get_const_tuple(bias.shape) | ||
dtype = A.dtype | ||
|
||
@memoize("topi.tests.test_topi_conv3d_ncdhw.verify_conv3d_ncdhw") | ||
def get_ref_data(): | ||
a_np = np.random.uniform(size=a_shape).astype(dtype) | ||
w_np = np.random.uniform(size=w_shape).astype(dtype) | ||
b_np = np.random.uniform(size=bias_shape).astype(dtype) | ||
dw_np = topi.testing.dilate_python(w_np, (1, 1, dilation, dilation, dilation)) | ||
c_np = topi.testing.conv3d_ncdhw_python(a_np, dw_np, stride, padding) | ||
if add_bias: | ||
c_np += b_np | ||
if add_relu: | ||
c_np = np.maximum(c_np, 0) | ||
return a_np, w_np, b_np, c_np | ||
|
||
a_np, w_np, b_np, c_np = get_ref_data() | ||
|
||
def check_device(device): | ||
ctx = tvm.context(device, 0) | ||
if not ctx.exist: | ||
print("Skip because %s is not enabled" % device) | ||
return | ||
print("Running on target: %s" % device) | ||
with tvm.target.create(device): | ||
C = topi.nn.conv3d(A, W, (stride, stride, stride), (padding, padding, padding), | ||
(dilation, dilation, dilation), layout='NCDHW', out_dtype=dtype) | ||
if add_bias: | ||
C = topi.add(C, bias) | ||
if add_relu: | ||
C = topi.nn.relu(C) | ||
s = topi.generic.schedule_conv3d_ncdhw([C]) | ||
|
||
a = tvm.nd.array(a_np, ctx) | ||
w = tvm.nd.array(w_np, ctx) | ||
b = tvm.nd.array(b_np, ctx) | ||
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx) | ||
if add_bias: | ||
func = tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation)) | ||
func(a, w, b, c) | ||
else: | ||
func = tvm.build(s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation)) | ||
func(a, w, c) | ||
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-4) | ||
|
||
for device in get_all_backend(): | ||
with autotvm.tophub.context(device): # load tophub pre-tuned parameters | ||
check_device(device) | ||
|
||
|
||
def test_conv3d_ncdhw(): | ||
#3DCNN workloads | ||
verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, 0) | ||
verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, 0) | ||
verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, 1) | ||
verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, 1) | ||
|
||
# bias, relu | ||
verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_relu=True) | ||
verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_bias=True) | ||
verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_bias=True, add_relu=True) | ||
|
||
# dilation = 2 | ||
verify_conv3d_ncdhw(1, 64, 56, 3, 3, 1, 1, dilation=2) | ||
|
||
# batch size | ||
verify_conv3d_ncdhw(4, 64, 56, 5, 3, 1, 1) | ||
|
||
# weird workloads | ||
verify_conv3d_ncdhw(2, 2, 2, 2, 2, 2, 2) | ||
verify_conv3d_ncdhw(3, 3, 3, 3, 3, 3, 3) | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
test_conv3d_ncdhw() |