-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TOPI][Hexagon] Implement quantized elementwise
- Loading branch information
1 parent
bb00a15
commit a2a9e60
Showing
4 changed files
with
438 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name | ||
|
||
"""Compute and schedule for quantized add, multiply, subtract op | ||
Please note the following assumptions made by the implementation: | ||
1) The inputs will be multiple of crouton layout except for the axis that needs broadcasting.""" | ||
|
||
from tvm import te | ||
from tvm import tir | ||
from ..utils import get_layout_transform_fn, get_fixed_point_value | ||
import tvm | ||
|
||
|
||
def broadcast_axis(tensor_A, tensor_B): | ||
"""Find out the indices that will have broadcasting""" | ||
A_broadcast = [] | ||
B_broadcast = [] | ||
|
||
for i in range(len(tensor_A.shape)): | ||
if tensor_A.shape[i] == tensor_B.shape[i]: | ||
A_broadcast.append(1) | ||
B_broadcast.append(1) | ||
elif tensor_A.shape[i] == 1: | ||
A_broadcast.append(0) | ||
B_broadcast.append(1) | ||
elif tensor_B.shape[i] == 1: | ||
A_broadcast.append(1) | ||
B_broadcast.append(0) | ||
return A_broadcast, B_broadcast | ||
|
||
|
||
def saturate(x: te.Tensor, dtype: str): | ||
"""Saturate value for the specified data type""" | ||
return te.max(te.min_value(dtype), te.min(x, te.max_value(dtype))) | ||
|
||
|
||
def get_int_scale(scale_A, scale_B, scale_M, zero_point_A, zero_point_B, zero_point_M, op, dtype): | ||
"""Get fixed-point number""" | ||
C_recip = 1 / scale_M | ||
|
||
if op == "qmul": | ||
scale = scale_A * scale_B * C_recip | ||
scale_fixed_point, rsh = get_fixed_point_value(scale, "int16") | ||
corr = zero_point_M << rsh | ||
|
||
return scale_fixed_point, rsh, corr | ||
else: | ||
a_scale_f = scale_A * C_recip | ||
b_scale_f = scale_B * C_recip | ||
scale_fixed_point_a, rsh_a = get_fixed_point_value(a_scale_f, "int16") | ||
scale_fixed_point_b, rsh_b = get_fixed_point_value(b_scale_f, "int16") | ||
|
||
if rsh_a > rsh_b: | ||
scale_fixed_point_a = scale_fixed_point_a >> (rsh_a - rsh_b) | ||
rsh = rsh_b | ||
else: | ||
scale_fixed_point_b = scale_fixed_point_b >> (rsh_b - rsh_a) | ||
rsh = rsh_a | ||
|
||
if op == "qadd": | ||
corr = (zero_point_M << rsh) - ( | ||
zero_point_A * scale_fixed_point_a + zero_point_B * scale_fixed_point_b | ||
) | ||
else: | ||
corr = (zero_point_M << rsh) - ( | ||
zero_point_A * scale_fixed_point_a - zero_point_B * scale_fixed_point_b | ||
) | ||
|
||
return scale_fixed_point_a, scale_fixed_point_b, rsh, corr | ||
|
||
|
||
def qadd_broadcast_compute( | ||
tensor_A, | ||
tensor_B, | ||
output_shape, | ||
zero_point_A, | ||
scale_A, | ||
zero_point_B, | ||
scale_B, | ||
zero_point_M, | ||
scale_M, | ||
dtype, | ||
): | ||
"""Compute quantized add with broadcasting""" | ||
A_broadcast, B_broadcast = broadcast_axis(tensor_A, tensor_B) | ||
n_a, h_a, w_a, c_a = A_broadcast | ||
n_b, h_b, w_b, c_b = B_broadcast | ||
|
||
scale_a, scale_b, rsh, corr = get_int_scale( | ||
scale_A, scale_B, scale_M, zero_point_A, zero_point_B, zero_point_M, "qadd", "int16" | ||
) | ||
|
||
return te.compute( | ||
output_shape, | ||
lambda n, h, w, c: saturate( | ||
( | ||
( | ||
(tensor_A[n * n_a, h * h_a, w * w_a, c * c_a] * scale_a) | ||
+ (tensor_B[n * n_b, h * h_b, w * w_b, c * c_b] * scale_b) | ||
+ corr | ||
) | ||
>> rsh | ||
), | ||
dtype, | ||
).astype(dtype), | ||
) | ||
|
||
|
||
def qsubtract_broadcast_compute( | ||
tensor_A, | ||
tensor_B, | ||
output_shape, | ||
zero_point_A, | ||
scale_A, | ||
zero_point_B, | ||
scale_B, | ||
zero_point_M, | ||
scale_M, | ||
dtype, | ||
): | ||
"""Compute quantized subtract with broadcasting""" | ||
A_broadcast, B_broadcast = broadcast_axis(tensor_A, tensor_B) | ||
n_a, h_a, w_a, c_a = A_broadcast | ||
n_b, h_b, w_b, c_b = B_broadcast | ||
|
||
scale_a, scale_b, rsh, corr = get_int_scale( | ||
scale_A, scale_B, scale_M, zero_point_A, zero_point_B, zero_point_M, "qsub", "int16" | ||
) | ||
|
||
return te.compute( | ||
output_shape, | ||
lambda n, h, w, c: saturate( | ||
( | ||
( | ||
(tensor_A[n * n_a, h * h_a, w * w_a, c * c_a] * scale_a) | ||
- (tensor_B[n * n_b, h * h_b, w * w_b, c * c_b] * scale_b) | ||
+ corr | ||
) | ||
>> rsh | ||
), | ||
dtype, | ||
).astype(dtype), | ||
) | ||
|
||
|
||
def qmultiply_broadcast_compute( | ||
tensor_A, | ||
tensor_B, | ||
output_shape, | ||
zero_point_A, | ||
scale_A, | ||
zero_point_B, | ||
scale_B, | ||
zero_point_M, | ||
scale_M, | ||
dtype, | ||
): | ||
"""Compute quantized multiply with broadcasting""" | ||
A_broadcast, B_broadcast = broadcast_axis(tensor_A, tensor_B) | ||
n_a, h_a, w_a, c_a = A_broadcast | ||
n_b, h_b, w_b, c_b = B_broadcast | ||
|
||
scale_int, rsh, corr = get_int_scale( | ||
scale_A, scale_B, scale_M, zero_point_A, zero_point_B, zero_point_M, "qmul", "int16" | ||
) | ||
|
||
return te.compute( | ||
output_shape, | ||
lambda n, h, w, c: saturate( | ||
( | ||
( | ||
scale_int | ||
* (tensor_A[n * n_a, h * h_a, w * w_a, c * c_a] - zero_point_A) | ||
* (tensor_B[n * n_b, h * h_b, w * w_b, c * c_b] - zero_point_B) | ||
+ corr | ||
) | ||
>> rsh | ||
), | ||
dtype, | ||
).astype(dtype), | ||
) | ||
|
||
|
||
def tir_schedule_quant( | ||
out_M, | ||
tensor_A, | ||
tensor_B, | ||
output_layout: str, | ||
tensor_A_layout: str, | ||
tensor_B_layout: str, | ||
op_name: str, | ||
): | ||
"""Schedule for output layout nhwc-8h8w32c-2d""" | ||
func = te.create_prim_func([tensor_A, tensor_B, out_M]) | ||
|
||
s = tir.Schedule(func) | ||
|
||
block = s.get_block("compute") | ||
|
||
if tensor_A_layout == "nhwc-8h8w32c-2d": | ||
tensor_A_transformed_layout = get_layout_transform_fn(tensor_A_layout) | ||
s.transform_layout(block, buffer=tensor_A.name, index_map=tensor_A_transformed_layout) | ||
|
||
if tensor_B_layout == "nhwc-8h8w32c-2d": | ||
tensor_B_transformed_layout = get_layout_transform_fn(tensor_B_layout) | ||
s.transform_layout(block, buffer=tensor_B.name, index_map=tensor_B_transformed_layout) | ||
|
||
output_transformed_layout = get_layout_transform_fn(output_layout) | ||
s.transform_layout(block, buffer=out_M.name, index_map=output_transformed_layout) | ||
|
||
n, h, w, c = s.get_loops(block) | ||
|
||
h_o, h_i = s.split(h, [None, 8]) | ||
w_o, w_i = s.split(w, [None, 8]) | ||
c_o, c_i = s.split(c, [None, 32]) | ||
wio, wii = s.split(w_i, [None, 4]) | ||
|
||
s.reorder(n, h_o, w_o, c_o, h_i, wio, wii, c_i) | ||
|
||
return s |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.