-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
596333b
commit a2eea58
Showing
4 changed files
with
393 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""A postprocessor that verifies if the GPU code is correct""" | ||
|
||
from tvm._ffi.registry import register_object | ||
from .. import _ffi_api | ||
from .postproc import Postproc | ||
|
||
|
||
@register_object("meta_schedule.VerifyGPUCode") | ||
class VerifyGPUCode(Postproc): | ||
"""A postprocessor that verifies if the GPU code is correct""" | ||
|
||
def __init__(self) -> None: | ||
self.__init_handle_by_constructor__( | ||
_ffi_api.PostprocVerifyGPUCode, # type: ignore # pylint: disable=no-member | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
#include <tvm/tir/transform.h> | ||
|
||
#include "../utils.h" | ||
|
||
namespace tvm { | ||
namespace meta_schedule { | ||
|
||
/*! \brief Extract attribute from a target. */ | ||
Integer Extract(const Target& target, const char* name) { | ||
ICHECK(target.defined()); | ||
if (Optional<Integer> v = target->GetAttr<Integer>(name)) { | ||
return v.value(); | ||
} | ||
LOG(FATAL) << "AttributedError: \"" << name << "\" is not defined in the target"; | ||
throw; | ||
} | ||
|
||
/*! \brief Verify the correctness of the generated GPU code. */ | ||
class VerifyGPUCodeNode : public PostprocNode { | ||
public: | ||
Map<String, PrimExpr> target_constraints_{nullptr}; | ||
|
||
void InitializeWithTuneContext(const TuneContext& context) final { | ||
ICHECK(context->target.defined()); | ||
Target target = context->target.value(); | ||
this->target_constraints_ = Map<String, PrimExpr>{ | ||
{"max_shared_memory_per_block", Extract(target, "shared_memory_per_block")}, | ||
{"max_local_memory_per_block", Extract(target, "registers_per_block")}, | ||
{"max_threads_per_block", Extract(target, "max_threads_per_block")}, | ||
{"max_vthread", Integer(8)}, | ||
{"max_vector_bytes", Integer(16)}}; | ||
} | ||
|
||
bool Verify(const IRModule& mod) const { | ||
for (const auto& kv : mod->functions) { | ||
if (const auto* prim_func = kv.second.as<tir::PrimFuncNode>()) { | ||
if (!tir::VerifyGPUCode(GetRef<tir::PrimFunc>(prim_func), this->target_constraints_)) { | ||
return false; | ||
} | ||
} | ||
} | ||
return true; | ||
} | ||
|
||
bool Apply(const tir::Schedule& sch) final { | ||
IRModule mod = sch->mod(); | ||
for (const auto& kv : mod->functions) { | ||
const GlobalVar& g_var = kv.first; | ||
const BaseFunc& base_func = kv.second; | ||
if (const auto* prim_func = base_func.as<tir::PrimFuncNode>()) { | ||
IRModule lowered{nullptr}; | ||
try { | ||
auto pass_list = Array<tvm::transform::Pass>(); | ||
// Phase 1 | ||
// First three passes are not needed in TIR schedule. | ||
// pass_list.push_back(tir::transform::InjectPrefetch()); | ||
// pass_list.push_back(tir::transform::TextureFlatten()); | ||
// pass_list.push_back(tir::transform::StorageFlatten(64, instrument_bound_checkers)); | ||
pass_list.push_back(tir::transform::LowerCrossThreadReduction()); | ||
pass_list.push_back(tir::transform::LowerInitBlock()); | ||
pass_list.push_back(tir::transform::PlanAndUpdateBufferAllocationLocation()); | ||
pass_list.push_back(tir::transform::ConvertBlocksToOpaque()); | ||
pass_list.push_back(tir::transform::UnifyThreadBinding()); | ||
pass_list.push_back(tir::transform::CompactBufferAllocation()); | ||
pass_list.push_back(tir::transform::LowerMatchBuffer()); | ||
pass_list.push_back(tir::transform::FlattenBuffer()); | ||
pass_list.push_back(tir::transform::BF16Legalize()); | ||
pass_list.push_back(tir::transform::NarrowDataType(32)); | ||
pass_list.push_back(tir::transform::Simplify()); | ||
|
||
// Phase 2 | ||
pass_list.push_back(tir::transform::VectorizeLoop(true)); | ||
pass_list.push_back(tir::transform::InjectVirtualThread()); | ||
pass_list.push_back(tir::transform::InjectDoubleBuffer()); | ||
pass_list.push_back(tir::transform::StorageRewrite()); | ||
pass_list.push_back(tir::transform::MergeDynamicSharedMemoryAllocations()); | ||
|
||
// Convert Function to IRModule | ||
transform::PassContext pass_ctx = transform::PassContext::Current(); | ||
tir::PrimFunc f = WithAttr(GetRef<tir::PrimFunc>(prim_func), "global_symbol", | ||
runtime::String(g_var->name_hint)); | ||
bool noalias = pass_ctx->GetConfig<Bool>("tir.noalias", Bool(true)).value(); | ||
if (noalias) { | ||
f = WithAttr(std::move(f), "tir.noalias", Bool(true)); | ||
} | ||
IRModule mod = IRModule(Map<GlobalVar, BaseFunc>({{GlobalVar(g_var->name_hint), f}})); | ||
lowered = tvm::transform::Sequential(pass_list)(std::move(mod)); | ||
} catch (const dmlc::Error& e) { | ||
return false; | ||
} | ||
if (!Verify(lowered)) { | ||
return false; | ||
} | ||
} | ||
} | ||
return true; | ||
} | ||
|
||
static constexpr const char* _type_key = "meta_schedule.VerifyGPUCode"; | ||
TVM_DECLARE_FINAL_OBJECT_INFO(VerifyGPUCodeNode, PostprocNode); | ||
}; | ||
|
||
Postproc Postproc::VerifyGPUCode() { | ||
ObjectPtr<VerifyGPUCodeNode> n = make_object<VerifyGPUCodeNode>(); | ||
return Postproc(n); | ||
} | ||
|
||
TVM_REGISTER_NODE_TYPE(VerifyGPUCodeNode); | ||
TVM_REGISTER_GLOBAL("meta_schedule.PostprocVerifyGPUCode").set_body_typed(Postproc::VerifyGPUCode); | ||
|
||
} // namespace meta_schedule | ||
} // namespace tvm |
231 changes: 231 additions & 0 deletions
231
tests/python/unittest/test_meta_schedule_postproc_verify_gpu_code.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=missing-module-docstring,missing-function-docstring,missing-class-docstring | ||
|
||
import sys | ||
import pytest | ||
import tvm | ||
from tvm import tir | ||
from tvm.meta_schedule import TuneContext | ||
from tvm.meta_schedule.postproc import VerifyGPUCode | ||
from tvm.script import tir as T | ||
from tvm.target import Target | ||
|
||
|
||
def _target() -> Target: | ||
return Target("nvidia/geforce-rtx-3080") | ||
|
||
|
||
def _create_context(mod, target) -> TuneContext: | ||
ctx = TuneContext( | ||
mod=mod, | ||
target=target, | ||
postprocs=[ | ||
VerifyGPUCode(), | ||
], | ||
task_name="test", | ||
) | ||
for rule in ctx.postprocs: | ||
rule.initialize_with_tune_context(ctx) | ||
return ctx | ||
|
||
|
||
# pylint: disable=invalid-name,no-member,line-too-long,too-many-nested-blocks,no-self-argument,not-callable,misplaced-comparison-constant | ||
# fmt: off | ||
|
||
@tvm.script.ir_module | ||
class Conv2dCuda0: | ||
@T.prim_func | ||
def main(a: T.handle, b: T.handle) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "T.noalias": True}) | ||
# var definition | ||
threadIdx_x = T.env_thread("threadIdx.x") | ||
threadIdx_y = T.env_thread("threadIdx.y") | ||
blockIdx_x = T.env_thread("blockIdx.x") | ||
blockIdx_y = T.env_thread("blockIdx.y") | ||
blockIdx_z = T.env_thread("blockIdx.z") | ||
A = T.match_buffer(a, [14, 14, 256, 256], dtype="float32") | ||
B = T.match_buffer(b, [14, 14, 512, 256], dtype="float32") | ||
# body | ||
T.launch_thread(blockIdx_z, 196) | ||
B_local = T.allocate([64], "float32", "local") | ||
Apad_shared = T.allocate([512], "float32", "shared") | ||
Apad_shared_local = T.allocate([8], "float32", "local") | ||
T.launch_thread(blockIdx_y, 8) | ||
T.launch_thread(blockIdx_x, 4) | ||
T.launch_thread(threadIdx_y, 8) | ||
T.launch_thread(threadIdx_x, 8) | ||
for ff_c_init, nn_c_init in T.grid(8, 8): | ||
T.store(B_local, ff_c_init * 8 + nn_c_init, T.float32(0), True) | ||
for rc_outer, ry, rx in T.grid(32, 3, 3): | ||
for ax3_inner_outer in T.serial(0, 2): | ||
T.store(Apad_shared, T.ramp(threadIdx_y * 64 + threadIdx_x * 8 + ax3_inner_outer * 4, 1, 4), T.if_then_else(1 <= blockIdx_z // 14 + ry and blockIdx_z // 14 + ry < 15 and 1 <= rx + blockIdx_z % 14 and rx + blockIdx_z % 14 < 15, T.load("float32x4", A.data, T.ramp(ry * 917504 + blockIdx_z * 65536 + rx * 65536 + rc_outer * 2048 + threadIdx_y * 256 + blockIdx_x * 64 + threadIdx_x * 8 + ax3_inner_outer * 4 - 983040, 1, 4), T.broadcast(True, 4)), T.broadcast(T.float32(0), 4), dtype="float32x4"), T.broadcast(True, 4)) | ||
for rc_inner in T.serial(0, 8): | ||
for ax3 in T.serial(0, 8): | ||
T.store(Apad_shared_local, ax3, T.load("float32", Apad_shared, rc_inner * 64 + threadIdx_x * 8 + ax3), True) | ||
for ff_c, nn_c in T.grid(8, 8): | ||
T.store(B_local, ff_c * 8 + nn_c, T.load("float32", B_local, ff_c * 8 + nn_c) + T.load("float32", Apad_shared_local, nn_c), True) | ||
for ff_inner_inner_inner, nn_inner_inner_inner in T.grid(8, 8): | ||
T.store(B.data, blockIdx_z * 131072 + blockIdx_y * 16384 + threadIdx_y * 2048 + ff_inner_inner_inner * 256 + blockIdx_x * 64 + threadIdx_x * 8 + nn_inner_inner_inner, T.load("float32", B_local, ff_inner_inner_inner * 8 + nn_inner_inner_inner), True)# fmt: on | ||
|
||
|
||
@tvm.script.ir_module | ||
class Conv2dCuda1: | ||
@T.prim_func | ||
def main(a: T.handle, b: T.handle) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "T.noalias": True}) | ||
# var definition | ||
threadIdx_x = T.env_thread("threadIdx.x") | ||
threadIdx_y = T.env_thread("threadIdx.y") | ||
blockIdx_x = T.env_thread("blockIdx.x") | ||
blockIdx_y = T.env_thread("blockIdx.y") | ||
blockIdx_z = T.env_thread("blockIdx.z") | ||
A = T.match_buffer(a, [14, 14, 256, 256], dtype="float32") | ||
B = T.match_buffer(b, [14, 14, 512, 256], dtype="float32") | ||
# body | ||
T.launch_thread(blockIdx_z, 196) | ||
B_local = T.allocate([6400000], "float32", "local") | ||
Apad_shared = T.allocate([512], "float32", "shared") | ||
Apad_shared_local = T.allocate([8], "float32", "local") | ||
T.launch_thread(blockIdx_y, 8) | ||
T.launch_thread(blockIdx_x, 4) | ||
T.launch_thread(threadIdx_y, 8) | ||
T.launch_thread(threadIdx_x, 8) | ||
for ff_c_init, nn_c_init in T.grid(8, 8): | ||
T.store(B_local, ff_c_init * 8 + nn_c_init, T.float32(0), True) | ||
for rc_outer, ry, rx in T.grid(32, 3, 3): | ||
for ax3_inner_outer in T.serial(0, 2): | ||
T.store(Apad_shared, T.ramp(threadIdx_y * 64 + threadIdx_x * 8 + ax3_inner_outer * 4, 1, 4), T.if_then_else(1 <= blockIdx_z // 14 + ry and blockIdx_z // 14 + ry < 15 and 1 <= rx + blockIdx_z % 14 and rx + blockIdx_z % 14 < 15, T.load("float32x4", A.data, T.ramp(ry * 917504 + blockIdx_z * 65536 + rx * 65536 + rc_outer * 2048 + threadIdx_y * 256 + blockIdx_x * 64 + threadIdx_x * 8 + ax3_inner_outer * 4 - 983040, 1, 4), T.broadcast(True, 4)), T.broadcast(T.float32(0), 4), dtype="float32x4"), T.broadcast(True, 4)) | ||
for rc_inner in T.serial(0, 8): | ||
for ax3 in T.serial(0, 8): | ||
T.store(Apad_shared_local, ax3, T.load("float32", Apad_shared, rc_inner * 64 + threadIdx_x * 8 + ax3), True) | ||
for ff_c, nn_c in T.grid(8, 8): | ||
T.store(B_local, ff_c * 8 + nn_c, T.load("float32", B_local, ff_c * 8 + nn_c) + T.load("float32", Apad_shared_local, nn_c), True) | ||
for ff_inner_inner_inner, nn_inner_inner_inner in T.grid(8, 8): | ||
T.store(B.data, blockIdx_z * 131072 + blockIdx_y * 16384 + threadIdx_y * 2048 + ff_inner_inner_inner * 256 + blockIdx_x * 64 + threadIdx_x * 8 + nn_inner_inner_inner, T.load("float32", B_local, ff_inner_inner_inner * 8 + nn_inner_inner_inner), True)# fmt: on | ||
|
||
|
||
@tvm.script.ir_module | ||
class Conv2dCuda2: | ||
@T.prim_func | ||
def main(a: T.handle, b: T.handle) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "T.noalias": True}) | ||
# var definition | ||
threadIdx_x = T.env_thread("threadIdx.x") | ||
threadIdx_y = T.env_thread("threadIdx.y") | ||
blockIdx_x = T.env_thread("blockIdx.x") | ||
blockIdx_y = T.env_thread("blockIdx.y") | ||
blockIdx_z = T.env_thread("blockIdx.z") | ||
A = T.match_buffer(a, [14, 14, 256, 256], dtype="float32") | ||
B = T.match_buffer(b, [14, 14, 512, 256], dtype="float32") | ||
# body | ||
T.launch_thread(blockIdx_z, 196) | ||
B_local = T.allocate([64], "float32", "local") | ||
Apad_shared = T.allocate([512000], "float32", "shared") | ||
Apad_shared_local = T.allocate([8], "float32", "local") | ||
T.launch_thread(blockIdx_y, 8) | ||
T.launch_thread(blockIdx_x, 4) | ||
T.launch_thread(threadIdx_y, 8) | ||
T.launch_thread(threadIdx_x, 8) | ||
for ff_c_init, nn_c_init in T.grid(8, 8): | ||
T.store(B_local, ff_c_init * 8 + nn_c_init, T.float32(0), True) | ||
for rc_outer, ry, rx in T.grid(32, 3, 3): | ||
for ax3_inner_outer in T.serial(0, 2): | ||
T.store(Apad_shared, T.ramp(threadIdx_y * 64 + threadIdx_x * 8 + ax3_inner_outer * 4, 1, 4), T.if_then_else(1 <= blockIdx_z // 14 + ry and blockIdx_z // 14 + ry < 15 and 1 <= rx + blockIdx_z % 14 and rx + blockIdx_z % 14 < 15, T.load("float32x4", A.data, T.ramp(ry * 917504 + blockIdx_z * 65536 + rx * 65536 + rc_outer * 2048 + threadIdx_y * 256 + blockIdx_x * 64 + threadIdx_x * 8 + ax3_inner_outer * 4 - 983040, 1, 4), T.broadcast(True, 4)), T.broadcast(T.float32(0), 4), dtype="float32x4"), T.broadcast(True, 4)) | ||
for rc_inner in T.serial(0, 8): | ||
for ax3 in T.serial(0, 8): | ||
T.store(Apad_shared_local, ax3, T.load("float32", Apad_shared, rc_inner * 64 + threadIdx_x * 8 + ax3), True) | ||
for ff_c, nn_c in T.grid(8, 8): | ||
T.store(B_local, ff_c * 8 + nn_c, T.load("float32", B_local, ff_c * 8 + nn_c) + T.load("float32", Apad_shared_local, nn_c), True) | ||
for ff_inner_inner_inner, nn_inner_inner_inner in T.grid(8, 8): | ||
T.store(B.data, blockIdx_z * 131072 + blockIdx_y * 16384 + threadIdx_y * 2048 + ff_inner_inner_inner * 256 + blockIdx_x * 64 + threadIdx_x * 8 + nn_inner_inner_inner, T.load("float32", B_local, ff_inner_inner_inner * 8 + nn_inner_inner_inner), True)# fmt: on | ||
|
||
|
||
@tvm.script.ir_module | ||
class Conv2dCuda3: | ||
@T.prim_func | ||
def main(a: T.handle, b: T.handle) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "T.noalias": True}) | ||
# var definition | ||
threadIdx_x = T.env_thread("threadIdx.x") | ||
threadIdx_y = T.env_thread("threadIdx.y") | ||
blockIdx_x = T.env_thread("blockIdx.x") | ||
blockIdx_y = T.env_thread("blockIdx.y") | ||
blockIdx_z = T.env_thread("blockIdx.z") | ||
A = T.match_buffer(a, [14, 14, 256, 256], dtype="float32") | ||
B = T.match_buffer(b, [14, 14, 512, 256], dtype="float32") | ||
# body | ||
T.launch_thread(blockIdx_z, 196) | ||
B_local = T.allocate([64], "float32", "local") | ||
Apad_shared = T.allocate([512], "float32", "shared") | ||
Apad_shared_local = T.allocate([8], "float32", "local") | ||
T.launch_thread(blockIdx_y, 8) | ||
T.launch_thread(blockIdx_x, 4) | ||
T.launch_thread(threadIdx_y, 8) | ||
T.launch_thread(threadIdx_x, 800000) | ||
for ff_c_init, nn_c_init in T.grid(8, 8): | ||
T.store(B_local, ff_c_init * 8 + nn_c_init, T.float32(0), True) | ||
for rc_outer, ry, rx in T.grid(32, 3, 3): | ||
for ax3_inner_outer in T.serial(0, 2): | ||
T.store(Apad_shared, T.ramp(threadIdx_y * 64 + threadIdx_x * 8 + ax3_inner_outer * 4, 1, 4), T.if_then_else(1 <= blockIdx_z // 14 + ry and blockIdx_z // 14 + ry < 15 and 1 <= rx + blockIdx_z % 14 and rx + blockIdx_z % 14 < 15, T.load("float32x4", A.data, T.ramp(ry * 917504 + blockIdx_z * 65536 + rx * 65536 + rc_outer * 2048 + threadIdx_y * 256 + blockIdx_x * 64 + threadIdx_x * 8 + ax3_inner_outer * 4 - 983040, 1, 4), T.broadcast(True, 4)), T.broadcast(T.float32(0), 4), dtype="float32x4"), T.broadcast(True, 4)) | ||
for rc_inner in T.serial(0, 8): | ||
for ax3 in T.serial(0, 8): | ||
T.store(Apad_shared_local, ax3, T.load("float32", Apad_shared, rc_inner * 64 + threadIdx_x * 8 + ax3), True) | ||
for ff_c, nn_c in T.grid(8, 8): | ||
T.store(B_local, ff_c * 8 + nn_c, T.load("float32", B_local, ff_c * 8 + nn_c) + T.load("float32", Apad_shared_local, nn_c), True) | ||
for ff_inner_inner_inner, nn_inner_inner_inner in T.grid(8, 8): | ||
T.store(B.data, blockIdx_z * 131072 + blockIdx_y * 16384 + threadIdx_y * 2048 + ff_inner_inner_inner * 256 + blockIdx_x * 64 + threadIdx_x * 8 + nn_inner_inner_inner, T.load("float32", B_local, ff_inner_inner_inner * 8 + nn_inner_inner_inner), True)# fmt: on | ||
|
||
|
||
# fmt: on | ||
# pylint: enable=invalid-name,no-member,line-too-long,too-many-nested-blocks,no-self-argument,not-callable,misplaced-comparison-constant | ||
|
||
|
||
def test_postproc_verify_gpu_0(): | ||
mod = Conv2dCuda0 | ||
ctx = _create_context(mod, target=_target()) | ||
sch = tir.Schedule(mod, debug_mask="all") | ||
assert ctx.postprocs[0].apply(sch) | ||
|
||
|
||
def test_postproc_verify_gpu_1(): | ||
mod = Conv2dCuda1 | ||
ctx = _create_context(mod, target=_target()) | ||
sch = tir.Schedule(mod, debug_mask="all") | ||
assert not ctx.postprocs[0].apply(sch) | ||
|
||
|
||
def test_postproc_verify_gpu_2(): | ||
mod = Conv2dCuda2 | ||
ctx = _create_context(mod, target=_target()) | ||
sch = tir.Schedule(mod, debug_mask="all") | ||
assert not ctx.postprocs[0].apply(sch) | ||
|
||
|
||
def test_postproc_verify_gpu_3(): | ||
mod = Conv2dCuda3 | ||
ctx = _create_context(mod, target=_target()) | ||
sch = tir.Schedule(mod, debug_mask="all") | ||
assert not ctx.postprocs[0].apply(sch) | ||
|
||
|
||
if __name__ == "__main__": | ||
sys.exit(pytest.main([__file__] + sys.argv[1:])) |