Skip to content

Commit

Permalink
add rocm codegen unittest for cross thread reduction (#4423)
Browse files Browse the repository at this point in the history
  • Loading branch information
t-vi authored and masahi committed Nov 25, 2019
1 parent dabde40 commit a44ac18
Showing 1 changed file with 54 additions and 0 deletions.
54 changes: 54 additions & 0 deletions tests/python/unittest/test_codegen_rocm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import numpy as np


def test_rocm_cross_thread_reduction():
if not tvm.rocm(0).exist or not tvm.module.enabled("rocm"):
print("skip because rocm is not enabled..")
return

# based on the reduction tutorial
n = tvm.var("n")
m = tvm.var("m")
A = tvm.placeholder((n, m), name='A')
k = tvm.reduce_axis((0, m), "k")
B = tvm.compute((n,), lambda i: tvm.sum(A[i, k], axis=k), name="B")
s = tvm.create_schedule(B.op)
ko, ki = s[B].split(B.op.reduce_axis[0], factor=16)
BF = s.rfactor(B, ki)
xo, xi = s[B].split(s[B].op.axis[0], factor=32)
s[B].bind(xo, tvm.thread_axis("blockIdx.x"))
s[B].bind(xi, tvm.thread_axis("threadIdx.y"))
tx = tvm.thread_axis("threadIdx.x")
s[B].bind(s[B].op.reduce_axis[0], tx)
s[BF].compute_at(s[B], s[B].op.reduce_axis[0])
s[B].set_store_predicate(tx.var.equal(0))
frocm = tvm.build(s, [A, B], "rocm")

nn = 128
ctx = tvm.rocm(0)
a = tvm.nd.array(np.random.uniform(size=(nn, nn)).astype(A.dtype), ctx)
b = tvm.nd.array(np.zeros(nn, dtype=B.dtype), ctx)
frocm(a, b)
tvm.testing.assert_allclose(
b.asnumpy(), np.sum(a.asnumpy(), axis=1), rtol=1e-4)


if __name__ == "__main__":
test_rocm_cross_thread_reduction()

0 comments on commit a44ac18

Please sign in to comment.