Skip to content

Commit

Permalink
Solve custom model of prelu
Browse files Browse the repository at this point in the history
  • Loading branch information
FrozenGene committed Nov 14, 2019
1 parent 5d66e7a commit a8eefa4
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 5 deletions.
3 changes: 1 addition & 2 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -1341,14 +1341,13 @@ def convert_prelu(self, op):
alpha_tensor = input_tensors[1]
alpha_tensor_type = alpha_tensor.tensor.Type()
alpha_tensor_type_str = self.get_tensor_type_str(alpha_tensor_type)
alpha_expr = self.exp_tab.new_const(self.get_tensor_value(alpha_tensor),
alpha_expr = self.exp_tab.new_const(self.get_tensor_value(alpha_tensor).flatten(),
dtype=alpha_tensor_type_str)
in_expr = self.get_expr(input_tensor.tensor_idx)
out = _op.nn.prelu(in_expr, alpha_expr, axis=3)

return out


def get_expr(self, input_tensor_idx):
return self.exp_tab.get_expr(get_tensor_name(self.subgraph, input_tensor_idx))

Expand Down
6 changes: 3 additions & 3 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -934,18 +934,18 @@ def test_forward_relu():
""" ReLU """
_test_relu(np.arange(6.0, dtype=np.float32).reshape((1, 6)))

def _test_prelu(data):
def _test_prelu(data, alpha):
""" One iteration of PReLU """
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
alpha = np.full((data.shape[-1],), 0.2, dtype=data.dtype)
# This specific pattern will be replaced into PRelu by tflite
out = nn_ops.relu(in_data) + (-alpha * nn_ops.relu(-in_data))
compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out])

def test_forward_prelu():
""" PReLU """
_test_prelu(np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"))
_test_prelu(np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((3,), 0.2, dtype="float32"))
_test_prelu(np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((1, 1, 3), 0.2, dtype="float32"))

#######################################################################
# Fully Connected
Expand Down

0 comments on commit a8eefa4

Please sign in to comment.