Skip to content

Commit

Permalink
QNN quantize and dequantize operators. (#3745)
Browse files Browse the repository at this point in the history
* QNN quantize and dequantize operators.

* addressing review comments.

* addressing review comments.

* Adding new line at the end of the file.

* Adhering to styling guidelines.

* Adding name to contributors.

* Fixing lint issue.

* Fixing file name.

* Removing unnecessary code.
  • Loading branch information
shoubhik authored and vinx13 committed Aug 16, 2019
1 parent 674feba commit d3eb9cb
Show file tree
Hide file tree
Showing 9 changed files with 464 additions and 11 deletions.
1 change: 1 addition & 0 deletions CONTRIBUTORS.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,3 +111,4 @@ We do encourage everyone to work anything they are interested in.
- [Haolong Zhang](https://github.com/haolongzhangm)
- [Cody Hao Yu](https://github.com/comaniac)
- [Chris Nuernberger](https://github.com/cnuernber)
- [Shoubhik Bhattacharya](https://github.com/shoubhik)
32 changes: 32 additions & 0 deletions include/tvm/relay/qnn/attrs.h
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,38 @@ struct RequantizeAttrs : public tvm::AttrsNode<RequantizeAttrs> {
}
};

/*! \brief Attribute for quantize operator */
struct QuantizeAttrs : public tvm::AttrsNode<QuantizeAttrs> {
int32_t output_zero_point;
double output_scale;
DataType out_dtype;

TVM_DECLARE_ATTRS(QuantizeAttrs, "relay.attrs.QuantizeAttrs") {
TVM_ATTR_FIELD(out_dtype)
.describe("Output data type, can be one of [int8 or uint8].");

TVM_ATTR_FIELD(output_zero_point)
.describe("The zero_point for the activation of this op.");

TVM_ATTR_FIELD(output_scale)
.describe("The scale for the activation of this op.");
}
};

/*! \brief Attribute for dequantize operator */
struct DequantizeAttrs : public tvm::AttrsNode<DequantizeAttrs> {
int32_t input_zero_point;
double input_scale;

TVM_DECLARE_ATTRS(QuantizeAttrs, "relay.attrs.QuantizeAttrs") {
TVM_ATTR_FIELD(input_zero_point)
.describe("The zero_point for the input tensor of this op.");

TVM_ATTR_FIELD(input_scale)
.describe("The scale for the input tensor of this op.");
}
};

} // namespace qnn
} // namespace relay
} // namespace tvm
Expand Down
60 changes: 60 additions & 0 deletions python/tvm/relay/qnn/op/qnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,66 @@ def requantize(data,
rounding,
out_dtype)


def quantize(data,
output_scale,
output_zero_point,
out_dtype='int8'):
r""" Quantize op
This operator takes float32 as input and produces quantized int8 or unit8 as output.
The input tensor can be of any shape. The output shape is the same as input shape.
Q_output = clamp((round(input_tensor/output_scale) + output_zero_point),
out_dtype::min,
out_dtype::max)
Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
output_zero_point : int
The output zero_point.
output_scale : float
The output scale.
input_dtype : str, optional
The data type of the input tensor. Can be [int8, uint8]
Returns
-------
result : tvm.relay.Expr
The computed result.
"""

return _make.quantize(data,
output_scale,
output_zero_point,
out_dtype)


def dequantize(data,
input_scale,
input_zero_point):
r""" Dequantize op
This operator takes quantized int8 and unit8 as input and produces
dequantized float32 as output. The output shape is the same as input shape. The input
tensor can be of any shape.
Parameters
----------
data : tvm.relay.Expr
The input tensor to be dequantized. Can be of type [int8, uint8].
input_zero_point : int
The output zero_point.
input_scale : float
The output scale.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""

return _make.dequantize(data,
input_scale,
input_zero_point)
def concatenate(data,
input_scales,
input_zero_points,
Expand Down
103 changes: 103 additions & 0 deletions src/relay/qnn/op/dequantize.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file src/relay/qnn/op/dequantize.cc
* \brief QNN dequantize operator. Dequantize operator converts from quantized
* domain to unquantized domain.
*/

#include <tvm/relay/analysis.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include "../../pass/pattern_util.h"
#include "../util.h"

namespace tvm {
namespace relay {
namespace qnn {

TVM_REGISTER_NODE_TYPE(DequantizeAttrs);

bool DequantizeRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 2);
const auto* data = types[0].as<TensorTypeNode>();
const auto input_dtype = data->dtype;
CHECK(input_dtype == Int(8) || input_dtype == UInt(8))
<< "Input type should be one of the quantized types [unit8, int8] but was " << input_dtype;
const Array<tvm::Expr> oshape = data->shape;
// assign output type, output will always be float 32.
reporter->Assign(types[1], TensorTypeNode::make(oshape, Float(32)));
return true;
}

Expr MakeDequantize(Expr data,
double input_scale,
int32_t input_zero_point) {
auto attrs = make_node<DequantizeAttrs>();
attrs->input_scale = input_scale;
attrs->input_zero_point = input_zero_point;
// real_value = scale * (quantized_value - zero_point)
// A more detailed explanation can be found here - https://github.com/google/gemmlowp/blob/master/doc/quantization.md
static const Op& op = Op::Get("qnn.dequantize");
return CallNode::make(op, {data}, Attrs(attrs), {});
}

Expr DequantizeLower(const Expr& input_tensor,
const DequantizeAttrs* attrs) {
const auto input_zero_point = MakeConstantScalar(Int(32), attrs->input_zero_point);
const auto input_scale = MakeConstantScalar(Float(32), attrs->input_scale);
auto shift = Subtract(Cast(input_tensor, Int(32)), input_zero_point);
auto scaled_output = Multiply(Cast(shift, Float(32)), input_scale);
return scaled_output;
}

Expr DequantizeLegalize(const Attrs& attrs,
const Array<Expr>& new_args,
const Array<tvm::relay::Type>& arg_types) {
CHECK_EQ(new_args.size(), 1);
auto& data = new_args[0];
const auto* dequantize_attrs = attrs.as<DequantizeAttrs>();
CHECK(dequantize_attrs != nullptr);
CHECK_EQ(arg_types.size(), 1);
return DequantizeLower(data, dequantize_attrs);
}

RELAY_REGISTER_OP("qnn.dequantize")
.describe(R"code(Dequantizes the input and produces float32 output.
The input is always quantized (int8, uint8) and will be converted to float32 given input scale and zero_point.
- **data**: Quantized tensor of any shape to dequantize. The input data can be of floating point
)code" TVM_ADD_FILELINE)
.set_attrs_type_key("relay.attrs.DequantizeAttrs")
.set_num_inputs(1)
.add_argument("data", "Tensor", "The tensor to dequantize.")
.set_support_level(11)
.add_type_rel("Dequantize", DequantizeRel)
.set_attr<FTVMLegalize>("FTVMLegalize", DequantizeLegalize);

TVM_REGISTER_API("relay.qnn.op._make.dequantize")
.set_body_typed(MakeDequantize);

} // namespace qnn
} // namespace relay
} // namespace tvm
121 changes: 121 additions & 0 deletions src/relay/qnn/op/quantize.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file src/relay/qnn/op/quantize.cc
* \brief QNN dequantize operator. Dequantize operator converts from quantized
* domain to unquantized domain.
*/

#include <tvm/relay/analysis.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include "../../pass/pattern_util.h"
#include "../util.h"

namespace tvm {
namespace relay {
namespace qnn {

TVM_REGISTER_NODE_TYPE(QuantizeAttrs);

bool QuantizeRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 2);
const auto* data = types[0].as<TensorTypeNode>();
const auto input_dtype = data->dtype;
CHECK(input_dtype == Float(32))
<< "Input type should be one of float32 but was " << input_dtype;
const auto* quantize_attrs = attrs.as<QuantizeAttrs>();
const Array<tvm::Expr> oshape = data->shape;
const DataType out_dtype = quantize_attrs->out_dtype;
CHECK(out_dtype == Int(8) || out_dtype == UInt(8))
<< "Output type should be one of [int8, unit8 ] but was " << out_dtype;
// assign output type
reporter->Assign(types[1], TensorTypeNode::make(oshape, out_dtype));
return true;
}

Expr MakeQuantize(Expr data,
double output_scale,
int32_t output_zero_point,
DataType out_dtype) {
auto attrs = make_node<QuantizeAttrs>();
attrs->output_scale = output_scale;
attrs->output_zero_point = output_zero_point;
attrs->out_dtype = std::move(out_dtype);
// result_quantized_value = result_zero_point + result_real_value / result_scale.
// A more detailed explanation can be found here - https://github.com/google/gemmlowp/blob/master/doc/quantization.md
static const Op& op = Op::Get("qnn.quantize");
return CallNode::make(op, {data}, Attrs(attrs), {});
}

Expr QuantizeLower(const Expr& input_tensor,
const QuantizeAttrs* attrs) {
const auto out_dtype = attrs->out_dtype;
const auto output_zero_point = MakeConstantScalar(Int(32), attrs->output_zero_point);
const auto scale = MakeConstantScalar(Float(32), attrs->output_scale);
const int32_t min_val = GetQmin(out_dtype);
const int32_t max_val = GetQmax(out_dtype);
auto scale_data = Cast(Round(Divide(input_tensor, scale)), Int(32));
auto add_zero_point = Add(scale_data, output_zero_point);
auto clamped_output = Clip(add_zero_point, min_val, max_val);
auto clamp_out_dtype = Cast(clamped_output, out_dtype);
return clamp_out_dtype;
}

Expr QuantizeLegalize(const Attrs& attrs,
const Array<Expr>& new_args,
const Array<tvm::relay::Type>& arg_types) {
CHECK_EQ(new_args.size(), 1);
auto& data = new_args[0];
const auto* quantize_attrs = attrs.as<QuantizeAttrs>();
CHECK(quantize_attrs != nullptr);

CHECK_EQ(arg_types.size(), 1);
return QuantizeLower(data, quantize_attrs);
}

RELAY_REGISTER_OP("qnn.quantize")
.describe(R"code(Quantizes the input and produces quantized output.
The input can be either float or quantized(int8, unit8). If the input is float,
this op takes scale and zero point and quantize the float value to
quantized output, in int8 or uint8 format. If the input is quantized value,
the op requantize the input (of a certain type, with a given scale and zero
point) to the output of the same or different type with a same or different
scale and zero point.
- **data**: Tensor of any shape to quantize. The input data can be of floating point
or quantized.
)code" TVM_ADD_FILELINE)
.set_attrs_type_key("relay.attrs.QuantizeAttrs")
.set_num_inputs(1)
.add_argument("data", "Tensor", "The tensor to quantize.")
.set_support_level(11)
.add_type_rel("Quantize", QuantizeRel)
.set_attr<FTVMLegalize>("FTVMLegalize", QuantizeLegalize);

TVM_REGISTER_API("relay.qnn.op._make.quantize")
.set_body_typed(MakeQuantize);

} // namespace qnn
} // namespace relay
} // namespace tvm
6 changes: 3 additions & 3 deletions src/relay/qnn/op/requantize.cc
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

/*!
* Copyright (c) 2019 by Contributors
* \file requantize.cc
* \file src/relay/qnn/op/requantize.cc
* \brief QNN requantize operator.
*/

Expand Down Expand Up @@ -228,14 +228,14 @@ bool RequantizeRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const auto* data = types[0].as<TensorTypeNode>();
const auto in_dtype = data->dtype;
CHECK(in_dtype == Int(8) || in_dtype == UInt(8) || in_dtype == Int(32))
<< "Input type should be an integer but was " << in_dtype;
<< "Input type should be one of [int8, uint8, int32] but was " << in_dtype;

const Array<tvm::Expr> oshape = data->shape;
// assign output type
const RequantizeAttrs* param = attrs.as<RequantizeAttrs>();
auto out_dtype = param->out_dtype;
CHECK(out_dtype == Int(8) || out_dtype == UInt(8) || out_dtype == Int(32))
<< "Output type should be an integer but was " << out_dtype;
<< "Output type should be one of [int8, uint8, int32] but was " << out_dtype;
reporter->Assign(types[1], TensorTypeNode::make(oshape, out_dtype));
return true;
}
Expand Down
Loading

0 comments on commit d3eb9cb

Please sign in to comment.