Skip to content

Commit

Permalink
[relay] use time_evaluator for measurement (#4191)
Browse files Browse the repository at this point in the history
  • Loading branch information
zhiics authored and tqchen committed Oct 24, 2019
1 parent f6a0aa2 commit e74a0eb
Showing 1 changed file with 45 additions and 20 deletions.
65 changes: 45 additions & 20 deletions tests/python/relay/benchmarking/benchmark_vm.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,20 @@
from tvm.contrib import graph_runtime
from tvm import relay
from tvm.relay import testing
from tvm.relay import vm
from tvm.relay import vmobj as _obj


def benchmark_execution(mod,
params,
measure=False,
measure=True,
data_shape=(1, 3, 224, 224),
out_shape=(1, 1000),
dtype='float32'):
def get_tvm_output(mod, data, params, target, ctx, dtype='float32'):
with relay.build_config(opt_level=1):
dtype='float32',
model="unknown"):
def get_graph_runtime_output(mod, data, params, target, ctx,
dtype='float32', number=2, repeat=20):
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod, target, params=params)

m = graph_runtime.create(graph, lib, ctx)
Expand All @@ -41,60 +45,81 @@ def get_tvm_output(mod, data, params, target, ctx, dtype='float32'):
out = m.get_output(0, tvm.nd.empty(out_shape, dtype))

if measure:
print("Evaluate graph runtime inference time cost...")
print("Evaluate graph runtime inference cost of {} on "
"{}".format(model, repr(ctx)))
ftimer = m.module.time_evaluator("run", ctx, number=1, repeat=20)
# Measure in millisecond.
prof_res = np.array(ftimer().results) * 1000
print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
print("Mean graph runtime inference time (std dev): %.2f ms (%.2f ms)" %
(np.mean(prof_res), np.std(prof_res)))

return out.asnumpy()

def get_tvm_vm_output(mod, data, params, target, ctx, dtype='float32'):
ex = relay.create_executor('vm', mod=mod, ctx=ctx)
result = ex.evaluate()(data, **params)
def get_vm_output(mod, data, params, target, ctx, dtype='float32',
number=2, repeat=20):
with relay.build_config(opt_level=3):
exe = vm.compile(mod, target, params=params)
rly_vm = vm.VirtualMachine(exe)
rly_vm.init(ctx)
result = rly_vm.run(data)

if measure:
print("Evaluate vm inference cost of {} on {}".format(model,
repr(ctx)))
ftimer = rly_vm.mod.time_evaluator("invoke", ctx, number=number,
repeat=repeat)
# Measure in millisecond.
prof_res = np.array(ftimer("main", _obj.Tensor(data)).results) * 1000
print("Mean vm inference time (std dev): %.2f ms (%.2f ms)" %
(np.mean(prof_res), np.std(prof_res)))

return result.asnumpy().astype(dtype)

# random input
data = np.random.uniform(size=data_shape).astype(dtype)
target = "llvm"
ctx = tvm.cpu(0)

tvm_out = get_tvm_output(mod, tvm.nd.array(data.astype(dtype)), params,
target, ctx, dtype)
vm_out = get_tvm_vm_output(mod, tvm.nd.array(data.astype(dtype)), params,
target, ctx, dtype)
tvm_out = get_graph_runtime_output(mod, tvm.nd.array(data.astype(dtype)),
params, target, ctx, dtype)
vm_out = get_vm_output(mod, tvm.nd.array(data.astype(dtype)), params,
target, ctx, dtype)
tvm.testing.assert_allclose(vm_out, tvm_out, rtol=1e-5, atol=1e-5)


def test_mlp():
image_shape = (1, 1, 28, 28)
mod, params = testing.mlp.get_workload(1)
benchmark_execution(mod, params, data_shape=image_shape, out_shape=(1, 10))
benchmark_execution(mod, params, data_shape=image_shape, out_shape=(1, 10),
model="mlp")


def test_vgg():
for n in [11, 16]:
mod, params = testing.vgg.get_workload(1, num_layers=n)
benchmark_execution(mod, params)
model = "vgg" + str(n)
benchmark_execution(mod, params, model=model)


def test_resnet():
for n in [18, 50]:
mod, params = testing.resnet.get_workload(batch_size=1, num_layers=n)
benchmark_execution(mod, params, True)
model = "resnet" + str(n)
benchmark_execution(mod, params, model=model)


def test_squeezenet():
for version in ['1.0', '1.1']:
mod, params = testing.squeezenet.get_workload(version=version)
benchmark_execution(mod, params)
model = "squeezenet" + version
benchmark_execution(mod, params, model=model)


def test_inception_v3():
image_shape = (3, 299, 299)
mod, params = testing.inception_v3.get_workload(image_shape=image_shape)
benchmark_execution(mod, params, data_shape=(1, 3, 299, 299))
benchmark_execution(mod, params, data_shape=(1, 3, 299, 299),
model="inception_v3")


def test_dqn():
Expand All @@ -112,7 +137,7 @@ def test_dcgan():

def test_mobilenet():
mod, params = testing.mobilenet.get_workload(batch_size=1)
benchmark_execution(mod, params)
benchmark_execution(mod, params, model="mobilenet")

# TODO: enable when the low building performance (several minutes) fixed.
def test_mobilenet_nhwc():
Expand All @@ -124,7 +149,7 @@ def test_mobilenet_nhwc():

def test_densenet():
mod, params = testing.densenet.get_workload(batch_size=1)
benchmark_execution(mod, params)
benchmark_execution(mod, params, model="densenet")


if __name__ == '__main__':
Expand Down

0 comments on commit e74a0eb

Please sign in to comment.