-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TVM Vertical Integration with PyTorch (#11911)
* optimize_torch & as_torch * split files * code formatting * optimizing optimized_torch * scrap your boilerplate * as_torch polished * configuration fixed * Apply suggestions from code review Co-authored-by: Lite Ye <liteye859@gmail.com> * more document * file deleter * optimize deleter * drop how-to guides * clang-format-10 * formatter changes * reformat * reformat * reformat * reformatting * fixed * auto setting * fixed * split long string * tune_tir * upgrade as_torch * optimize as_torch * as_torch * fixed typo Co-authored-by: juda <yzhou@octoml.ai> Co-authored-by: Lite Ye <liteye859@gmail.com>
- Loading branch information
1 parent
9bef7de
commit ea6ea42
Showing
8 changed files
with
1,099 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
#!/usr/bin/env python | ||
|
||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Test script for tvm torch module""" | ||
import numpy as np | ||
|
||
import torch | ||
import torch.nn | ||
|
||
import tvm | ||
from tvm.meta_schedule.tune import TuneConfig | ||
from tvm.target.target import Target | ||
import tvm.testing | ||
from tvm.contrib.torch import as_torch | ||
from tvm.script import tir as T | ||
|
||
|
||
@as_torch | ||
def matmul(M: int, N: int, K: int, dtype: str): | ||
@T.prim_func | ||
def main(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, [M, K], dtype=dtype) | ||
B = T.match_buffer(b, [N, K], dtype=dtype) | ||
C = T.match_buffer(c, [M, N], dtype=dtype) | ||
for i, j, k in T.grid(M, N, K): | ||
with T.block(): | ||
vi, vj, vk = T.axis.remap("SSR", [i, j, k]) | ||
with T.init(): | ||
C[vi, vj] = T.float32(0) | ||
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] | ||
|
||
return main | ||
|
||
|
||
@as_torch | ||
@tvm.script.ir_module | ||
class ModuleGPU: | ||
@T.prim_func | ||
def main(A: T.Buffer[8, "float32"], B: T.Buffer[8, "float32"]) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
for i_0 in T.thread_binding(2, thread="blockIdx.x"): | ||
for i_2 in T.thread_binding(2, thread="threadIdx.x"): | ||
for i_1 in T.serial(2): | ||
with T.block("B"): | ||
vi = T.axis.spatial(8, i_0 * 4 + i_1 * 2 + i_2) | ||
T.reads(A[vi]) | ||
T.writes(B[vi]) | ||
B[vi] = A[vi] + T.float32(1) | ||
|
||
|
||
@as_torch | ||
@T.prim_func | ||
def func_with_part_access_region(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, [128, 128]) | ||
B = T.match_buffer(b, [128, 128]) | ||
C = T.match_buffer(c, [128, 128]) | ||
|
||
with T.block(): | ||
for i, j in T.grid(128, 128): | ||
with T.block("s1"): | ||
vi, vj = T.axis.remap("SS", [i, j]) | ||
T.reads(A[vi, vj]) | ||
B[vi, vj] = A[vi, vj] + T.float32(1) | ||
|
||
for i, j in T.grid(128, 128): | ||
with T.block("s2"): | ||
vi, vj = T.axis.remap("SS", [i, j]) | ||
T.writes(C[vi, vj]) | ||
C[vi, vj] = B[vi, vj] + T.float32(1) | ||
|
||
|
||
config = TuneConfig( | ||
strategy="replay_trace", | ||
num_trials_per_iter=128, | ||
max_trials_per_task=128, | ||
max_trials_global=128, | ||
) | ||
|
||
|
||
@as_torch | ||
@tvm.script.ir_module | ||
class MyModule: | ||
@T.prim_func | ||
def main(a: T.handle, b: T.handle): | ||
# We exchange data between function by handles, which are similar to pointer. | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
# Create buffer from handles. | ||
A = T.match_buffer(a, (8,), dtype="float32") | ||
B = T.match_buffer(b, (8,), dtype="float32") | ||
for i in range(8): | ||
# A block is an abstraction for computation. | ||
with T.block("B"): | ||
# Define a spatial block iterator and bind it to value i. | ||
vi = T.axis.spatial(8, i) | ||
B[vi] = A[vi] + 1.0 | ||
|
||
|
||
@as_torch | ||
@T.prim_func | ||
def loop_split(a: T.handle, b: T.handle) -> None: | ||
A = T.match_buffer(a, [128, 128], dtype="float32") | ||
B = T.match_buffer(b, [128], dtype="float32") | ||
for i, ko in T.grid(128, 4): | ||
for ki in T.thread_binding(0, 32, thread="threadIdx.x"): | ||
with T.block("B"): | ||
vi = T.axis.S(128, i) | ||
vk = T.axis.R(128, ko * 32 + ki) | ||
T.reads([B[vi], A[vi, vk]]) | ||
T.writes([B[vi]]) | ||
with T.init(): | ||
B[vi] = T.float32(0) | ||
B[vi] = B[vi] + A[vi, vk] | ||
|
||
|
||
@as_torch | ||
def elementwise_with_root(M: int, N: int, dtype: str): | ||
@T.prim_func | ||
def f(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, [M, N]) | ||
B = T.match_buffer(b, [M, N]) | ||
C = T.match_buffer(c, [M, N]) | ||
|
||
with T.block(): | ||
for i, j in T.grid(M, N): | ||
with T.block("s1"): | ||
vi, vj = T.axis.remap("SS", [i, j]) | ||
B[vi, vj] = A[vi, vj] + T.float32(1) | ||
for i, j in T.grid(M, N): | ||
with T.block("s2"): | ||
vi, vj = T.axis.remap("SS", [i, j]) | ||
C[vi, vj] = B[vi, vj] + T.float32(1) | ||
|
||
return f | ||
|
||
|
||
class MinuesOnes(torch.nn.Module): | ||
def __init__(self): | ||
super(MinuesOnes, self).__init__() | ||
self.engine = MyModule | ||
|
||
def forward(self, *input): | ||
self.engine.forward(*input) | ||
return input[-1] - 1 | ||
|
||
|
||
def test_tvmscript_torch_matmul(): | ||
s1 = np.random.rand(128, 128).astype("float32") | ||
s2 = np.random.rand(128, 128).astype("float32") | ||
s3 = np.random.rand(128, 128).astype("float32") | ||
|
||
q1 = torch.from_numpy(s1) | ||
q2 = torch.from_numpy(s2) | ||
q3 = torch.from_numpy(s3) | ||
|
||
numpy_result = np.matmul(s1, np.transpose(s2)) | ||
|
||
nn_module = matmul(128, 128, 128, "float32") | ||
|
||
nn_module(q1, q2, q3) | ||
|
||
tvm.testing.assert_allclose(q3.numpy(), numpy_result, atol=1e-5, rtol=1e-5) | ||
|
||
|
||
def test_tvmscript_torch_decorator(): | ||
q1 = torch.arange(8).type(torch.float32) | ||
q2 = torch.zeros((8,), dtype=torch.float32) | ||
|
||
MyModule(q1, q2) | ||
|
||
tvm.testing.assert_allclose(q2.numpy(), (q1 + 1).numpy(), atol=1e-5, rtol=1e-5) | ||
|
||
|
||
def test_tvmscript_torch_gpu(): | ||
cuda0 = torch.device("cuda:0") | ||
q1 = torch.arange(8, device=cuda0).type(torch.float32) | ||
q2 = torch.zeros((8,), dtype=torch.float32, device=cuda0) | ||
|
||
ModuleGPU(q1, q2) | ||
|
||
tvm.testing.assert_allclose(q2.cpu().numpy(), (q1 + 1).cpu().numpy(), atol=1e-5, rtol=1e-5) | ||
|
||
|
||
def test_torch_with_tvmscript(): | ||
ref_result = np.arange(8).astype("float32") | ||
|
||
q1 = torch.arange(8).type(torch.float32) | ||
q2 = torch.zeros((8,), dtype=torch.float32) | ||
|
||
nn_module = MinuesOnes() | ||
|
||
ret = nn_module.forward(q1, q2) | ||
|
||
tvm.testing.assert_allclose(ret.numpy(), ref_result, atol=1e-5, rtol=1e-5) | ||
|
||
|
||
def test_tvmscript_torch_func_with_part_access_region(): | ||
a1 = torch.rand(128, 128) | ||
a2 = torch.zeros(128, 128) | ||
a3 = torch.zeros(128, 128) | ||
|
||
result = a1 + 2 | ||
|
||
func_with_part_access_region.tune() | ||
func_with_part_access_region(a1, a2, a3) | ||
|
||
tvm.testing.assert_allclose(a3.numpy(), result.numpy(), atol=1e-5, rtol=1e-5) | ||
|
||
|
||
def test_tvmscript_torch_loop_split(): | ||
x = torch.rand(128, 128).cuda() | ||
y = torch.zeros(128).cuda() | ||
|
||
result = torch.sum(x.cpu(), dim=1).numpy() | ||
|
||
loop_split.tune(config, Target("nvidia/geforce-rtx-3070")) | ||
loop_split(x, y) | ||
|
||
tvm.testing.assert_allclose(y.cpu().numpy(), result, atol=1e-5, rtol=1e-5) | ||
|
||
|
||
def test_tvmscript_torch_elementwise_with_root(): | ||
a1 = torch.rand(128, 128) | ||
a2 = torch.zeros(128, 128) | ||
a3 = torch.zeros(128, 128) | ||
|
||
result = a1 + 2 | ||
|
||
func = elementwise_with_root(128, 128, "float32") | ||
func.tune(config) | ||
func(a1, a2, a3) | ||
|
||
tvm.testing.assert_allclose(a3.numpy(), result.numpy(), atol=1e-5, rtol=1e-5) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_tvmscript_torch_matmul() | ||
test_tvmscript_torch_decorator() | ||
test_tvmscript_torch_gpu() | ||
test_torch_with_tvmscript() | ||
test_tvmscript_torch_func_with_part_access_region() | ||
test_tvmscript_torch_loop_split() | ||
test_tvmscript_torch_elementwise_with_root() |
Oops, something went wrong.