Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule] Update scripts for subgraph tuning #10501

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 7 additions & 3 deletions python/tvm/auto_scheduler/workload_registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,13 +30,14 @@
When we need the dag, we decode the string and call the function, which will return the dag.
"""

import json
import logging
import pickle
import json

import tvm._ffi
from tvm.runtime._ffi_node_api import LoadJSON, SaveJSON
from .utils import serialize_args, deserialize_args, get_func_name

from .utils import deserialize_args, get_func_name, serialize_args

logger = logging.getLogger("auto_scheduler")

Expand Down Expand Up @@ -194,7 +195,10 @@ def workload_key_to_tensors(workload_key):
assert callable(value)

args = deserialize_args(workload[1:])
return value(*args)
result = value(*args)
if isinstance(result, tuple):
result = list(result)
return result


def serialize_workload_registry_entry(workload_key):
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/meta_schedule/runner/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ class EvaluatorConfig(NamedTuple):

number: int = 3
repeat: int = 1
min_repeat_ms: int = 40
min_repeat_ms: int = 100
enable_cpu_cache_flush: bool = False

@staticmethod
Expand Down
9 changes: 4 additions & 5 deletions python/tvm/meta_schedule/runner/rpc_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,9 @@
# under the License.
"""RPC Runner"""
import concurrent.futures
from contextlib import contextmanager
import logging
import os.path as osp
from contextlib import contextmanager
from typing import Callable, List, Optional, Union

from tvm.contrib.popen_pool import PopenPoolExecutor
Expand All @@ -31,15 +31,14 @@
get_global_func_with_default_on_worker,
)
from .config import EvaluatorConfig, RPCConfig
from .runner import PyRunner, RunnerFuture, PyRunnerFuture, RunnerInput, RunnerResult
from .runner import PyRunner, PyRunnerFuture, RunnerFuture, RunnerInput, RunnerResult
from .utils import (
T_ARGUMENT_LIST,
T_ARG_INFO_JSON_OBJ_LIST,
T_ARGUMENT_LIST,
alloc_argument_common,
run_evaluator_common,
)


logger = logging.getLogger(__name__) # pylint: disable=invalid-name


Expand Down Expand Up @@ -118,7 +117,7 @@ def done(self) -> bool:
def result(self) -> RunnerResult:
try:
run_secs: List[float] = self.future.result()
except TimeoutError as exception:
except TimeoutError:
return RunnerResult(
None,
error_msg=f"RPCRunner: Timeout, killed after {self.timeout_sec} seconds",
Expand Down
137 changes: 137 additions & 0 deletions python/tvm/meta_schedule/testing/run_subgraph_auto_scheduler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitatios
# under the License.
# pylint: disable=missing-docstring
import argparse
import os

import tvm
from tvm import auto_scheduler
from tvm.meta_schedule.runner import RPCConfig
from tvm.meta_schedule.testing.te_workload import CONFIGS


def _parse_args():
args = argparse.ArgumentParser()
args.add_argument(
"--workload",
type=str,
required=True,
)
args.add_argument(
"--target",
type=str,
required=True,
)
args.add_argument(
"--num-trials",
type=int,
required=True,
)
args.add_argument(
"--rpc-host",
type=str,
required=True,
)
args.add_argument(
"--rpc-port",
type=int,
required=True,
)
args.add_argument(
"--rpc-key",
type=str,
required=True,
)
args.add_argument(
"--log-dir",
type=str,
required=True,
)
parsed = args.parse_args()
parsed.target = tvm.target.Target(parsed.target)
parsed.rpc_workers = RPCConfig(
tracker_host=parsed.rpc_host,
tracker_port=parsed.rpc_port,
tracker_key=parsed.rpc_key,
session_timeout_sec=30,
).count_num_servers(allow_missing=True)
return parsed


ARGS = _parse_args()


def main():
log_file = os.path.join(ARGS.log_dir, f"{ARGS.workload}.json")
workload_func, params = CONFIGS[ARGS.workload]
params = params[0] # type: ignore
workload_func = auto_scheduler.register_workload(workload_func)

if ARGS.target.kind.name == "llvm":
hardware_params = auto_scheduler.HardwareParams(
num_cores=int(ARGS.target.attrs["num-cores"]),
target=ARGS.target,
)
elif ARGS.target.kind.name == "cuda":
hardware_params = auto_scheduler.HardwareParams(
num_cores=-1,
vector_unit_bytes=16,
cache_line_bytes=64,
max_shared_memory_per_block=int(ARGS.target.attrs["max_shared_memory_per_block"]),
max_threads_per_block=int(ARGS.target.attrs["max_threads_per_block"]),
max_vthread_extent=8,
warp_size=32,
)
else:
raise NotImplementedError(f"Unsupported target {ARGS.target}")
task = auto_scheduler.SearchTask(
func=workload_func,
args=params,
target=ARGS.target,
hardware_params=hardware_params,
)
runner = auto_scheduler.RPCRunner(
key=ARGS.rpc_key,
host=ARGS.rpc_host,
port=ARGS.rpc_port,
n_parallel=ARGS.rpc_workers,
number=3,
repeat=1,
min_repeat_ms=100,
enable_cpu_cache_flush=False,
)

# Inspect the computational graph
print("Computational DAG:")
print(task.compute_dag)
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=ARGS.num_trials,
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
verbose=2,
runner=runner,
)
print("Running AutoTuning:")
task.tune(tune_option)
print("History Best:")
print(task.print_best(log_file))
sch, args = task.apply_best(log_file)
print("Lowered TIR:")
print(tvm.lower(sch, args, simple_mode=True))


if __name__ == "__main__":
main()
120 changes: 120 additions & 0 deletions python/tvm/meta_schedule/testing/run_subgraph_meta_schedule.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=missing-docstring
import argparse
import logging
from os import cpu_count
from typing import Optional

import tvm
from tvm import meta_schedule as ms
from tvm import tir
from tvm.meta_schedule.testing.te_workload import create_te_workload


def _parse_args():
args = argparse.ArgumentParser()
args.add_argument(
"--workload",
type=str,
required=True,
)
args.add_argument(
"--target",
type=str,
required=True,
)
args.add_argument(
"--num-trials",
type=int,
required=True,
)
args.add_argument(
"--work-dir",
type=str,
required=True,
)
args.add_argument(
"--rpc-host",
type=str,
required=True,
)
args.add_argument(
"--rpc-port",
type=int,
required=True,
)
args.add_argument(
"--rpc-key",
type=str,
required=True,
)
parsed = args.parse_args()
parsed.target = tvm.target.Target(parsed.target)
if parsed.target.attrs.get("mtriple", None) == "aarch64-linux-gnu":
parsed.alloc_repeat = 3
else:
parsed.alloc_repeat = 1
parsed.rpc_config = ms.runner.RPCConfig(
tracker_host=parsed.rpc_host,
tracker_port=parsed.rpc_port,
tracker_key=parsed.rpc_key,
session_timeout_sec=30,
)
parsed.rpc_workers = parsed.rpc_config.count_num_servers(allow_missing=False)
return parsed


logging.basicConfig()
logging.getLogger("tvm.meta_schedule").setLevel(logging.DEBUG)
ARGS = _parse_args()


def main():
runner = ms.runner.RPCRunner(
rpc_config=ARGS.rpc_config,
evaluator_config=ms.runner.EvaluatorConfig(
number=3,
repeat=1,
min_repeat_ms=100,
enable_cpu_cache_flush=False,
),
alloc_repeat=ARGS.alloc_repeat,
max_workers=ARGS.rpc_workers,
)
sch: Optional[tir.Schedule] = ms.tune_tir(
mod=create_te_workload(ARGS.workload, 0),
target=ARGS.target,
config=ms.EvolutionarySearchConfig(
num_trials_per_iter=64,
num_trials_total=ARGS.num_trials,
init_min_unmeasured=50,
),
runner=runner, # type: ignore
task_name=ARGS.workload,
work_dir=ARGS.work_dir,
num_threads=cpu_count(),
)
if sch is None:
print("No valid schedule found!")
else:
print(sch.mod.script())
print(sch.trace)


if __name__ == "__main__":
main()
3 changes: 1 addition & 2 deletions src/meta_schedule/postproc/verify_gpu_code.cc
Original file line number Diff line number Diff line change
Expand Up @@ -104,8 +104,7 @@ class VerifyGPUCodeNode : public PostprocNode {
ICHECK(context->target.defined());
Target target = context->target.value();
this->target_constraints_ = Map<String, PrimExpr>{
{"max_shared_memory_per_block", Extract(target, "shared_memory_per_block")},
{"max_local_memory_per_block", Extract(target, "registers_per_block")},
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The local memory restriction is removed to be consistent with AutoScheduler, as discussed with @masahi. CC: @Hzfengsy

{"max_shared_memory_per_block", Extract(target, "max_shared_memory_per_block")},
{"max_threads_per_block", Extract(target, "max_threads_per_block")},
{"max_vthread", Integer(8)},
{"max_vector_bytes", Integer(16)}};
Expand Down
29 changes: 26 additions & 3 deletions src/target/tag.cc
Original file line number Diff line number Diff line change
Expand Up @@ -70,14 +70,38 @@ Target TargetTag::AddTag(String name, Map<String, ObjectRef> config, bool overri

/********** Register Target tags **********/

TVM_REGISTER_TARGET_TAG("raspberry-pi/4b-aarch64")
.set_config({{"kind", String("llvm")},
{"mtriple", String("aarch64-linux-gnu")},
{"mcpu", String("cortex-a72")},
{"mattr", Array<String>{"+neon"}},
{"num-cores", Integer(4)},
{"host", Map<String, ObjectRef>{{"kind", String("llvm")},
{"mtriple", String("aarch64-linux-gnu")},
{"mcpu", String("cortex-a72")},
{"mattr", Array<String>{"+neon"}},
{"num-cores", Integer(4)}}}});

TVM_REGISTER_TARGET_TAG("nvidia/jetson-agx-xavier")
.set_config({{"kind", String("cuda")},
{"arch", String("sm_72")},
{"max_shared_memory_per_block", Integer(49152)},
{"max_threads_per_block", Integer(1024)},
{"thread_warp_size", Integer(32)},
{"registers_per_block", Integer(65536)},
{"host", Map<String, ObjectRef>{{"kind", String("llvm")},
{"mtriple", String("aarch64-linux-gnu")},
{"mcpu", String("carmel")},
{"num-cores", Integer(4)}}}});

#define TVM_REGISTER_CUDA_TAG(Name, Arch, SharedMem, RegPerBlock) \
TVM_REGISTER_TARGET_TAG(Name).set_config({ \
{"kind", String("cuda")}, \
{"arch", String(Arch)}, \
{"shared_memory_per_block", Integer(SharedMem)}, \
{"registers_per_block", Integer(RegPerBlock)}, \
{"max_shared_memory_per_block", Integer(SharedMem)}, \
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Per discussion with @masahi, we updated shared_memory_per_block to max_shared_memory_per_block to be consistent with Vulkan settings. I'm not fully convinced but would love to follow the convention as Masa suggested.

{"max_threads_per_block", Integer(1024)}, \
{"thread_warp_size", Integer(32)}, \
{"registers_per_block", Integer(RegPerBlock)}, \
});

TVM_REGISTER_CUDA_TAG("nvidia/tesla-k80", "sm_37", 49152, 65536);
Expand Down Expand Up @@ -318,7 +342,6 @@ TVM_REGISTER_CUDA_TAG("nvidia/geforce-gt-415m", "sm_21", 49152, 32768);
TVM_REGISTER_CUDA_TAG("nvidia/geforce-gtx-480m", "sm_20", 49152, 32768);
TVM_REGISTER_CUDA_TAG("nvidia/geforce-710m", "sm_21", 49152, 32768);
TVM_REGISTER_CUDA_TAG("nvidia/geforce-410m", "sm_21", 49152, 32768);
TVM_REGISTER_CUDA_TAG("nvidia/jetson-agx-xavier", "sm_72", 49152, 65536);
TVM_REGISTER_CUDA_TAG("nvidia/jetson-nano", "sm_53", 49152, 32768);
TVM_REGISTER_CUDA_TAG("nvidia/jetson-tx2", "sm_62", 49152, 32768);
TVM_REGISTER_CUDA_TAG("nvidia/jetson-tx1", "sm_53", 49152, 32768);
Expand Down
Loading