Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CMSIS-NN] Moved TFLite model making to common area #10939

Merged
merged 5 commits into from
Apr 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
161 changes: 161 additions & 0 deletions python/tvm/relay/testing/tflite.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Common utilities for creating TFLite models"""
from distutils.version import LooseVersion
import numpy as np
import pytest
import tvm

pytest.importorskip("tflite")
pytest.importorskip("tensorflow")
import tflite.Model # pylint: disable=wrong-import-position
import tensorflow as tf # pylint: disable=wrong-import-position


class TFLiteModel:
"""Creates TFLite Model and facilitates reference data generation"""

def __init__(self, dtype):
self.serial_model = None # This is what TFLite convert() provides
self.dtype = dtype # This is the dtype of graph inputs
self.shape_dict = {}
self.dtype_dict = {}

def create_conv2d_single(self, kernel_shape, strides, padding, dilation, activation):
"""Returns tf.function that creates TFLite Conv2d layer"""

@tf.function
def conv2d_single_function(ifm_tensor):
"""Returns TFLite Conv2d layer"""
op = tf.nn.conv2d(
ifm_tensor,
filters=tf.constant(
np.random.uniform(size=[kernel_shape[0], kernel_shape[1], 3, 3]),
dtype=tf.float32,
),
strides=[1, strides[0], strides[1], 1],
padding=padding,
dilations=dilation,
)
if activation == "RELU":
op = tf.nn.relu(op)
elif activation == "NONE":
pass
else:
assert False, "Unsupported activation {}".format(activation)
return op

return conv2d_single_function

def create_tflite_model(self, tfl_function, shapes, ranges=None):
"""Creates TFLite serial graph"""
tensor_specs = []
for i, shape in enumerate(shapes):
input_name = "input_" + str(i)
self.shape_dict.update({input_name: shape})
self.dtype_dict.update({input_name: self.dtype})
tensor_specs.append(tf.TensorSpec(shape, dtype=tf.float32, name=input_name))
concrete_func = tfl_function.get_concrete_function(*tensor_specs)

if not ranges:
ranges = [(0, 1) for _ in shapes]

def representative_dataset():
for _ in range(100):
inputs = []
for i, shape in enumerate(shapes):
data = np.random.uniform(
low=ranges[i][0], high=ranges[i][1], size=tuple(shape)
).astype("float32")
inputs.append(data)

yield inputs

converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
self.serial_model = converter.convert()

def convert_to_relay(self):
"""Converts TFLite serialized graph into Relay"""
assert self.serial_model is not None, "TFLite model is empty!"

tflite_model = tflite.Model.Model.GetRootAsModel(self.serial_model, 0)
relay_module, relay_params = tvm.relay.frontend.from_tflite(
tflite_model, self.shape_dict, self.dtype_dict
)
return relay_module, relay_params

def generate_randomized_input_data(self, seed, shape, dtype):
"""Generates randomized input numpy arrays based on shape and dtype."""
random_state = np.random.RandomState(seed)
random_data = None
if dtype == np.float32:
random_data = random_state.uniform(-1, 1, size).astype(dtype)
else:
low = np.iinfo(dtype).min
high = np.iinfo(dtype).max + 1
random_data = random_state.randint(low, high, shape, dtype)
return random_data

# pylint: disable=import-outside-toplevel
def generate_reference_data(self):
"""
This method uses TFLite reference kernels to generate reference output.
It returns randomized inputs and reference outputs.
"""
assert self.serial_model is not None, "TFLite model was not created."

output_tolerance = None
if tf.__version__ < LooseVersion("2.5.0"):
output_tolerance = 1
interpreter = tf.lite.Interpreter(model_content=self.serial_model)
else:
output_tolerance = 0
interpreter = tf.lite.Interpreter(
model_content=self.serial_model,
experimental_op_resolver_type=tf.lite.experimental.OpResolverType.BUILTIN_REF,
experimental_preserve_all_tensors=False,
)

interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Generate predictable randomized input
seed = 0
input_data = {}
for input_detail in input_details:
input_values = self.generate_randomized_input_data(
seed, input_detail["shape"], input_detail["dtype"]
)
interpreter.set_tensor(input_detail["index"], input_values)
input_data.update({input_detail["name"]: input_values})

interpreter.invoke()

# Obtain the expected output from interpreter
expected_output_data = {}
for output_detail in output_details:
expected_output_data.update(
{output_detail["name"]: interpreter.get_tensor(output_detail["index"])}
)

return input_data, expected_output_data, output_tolerance
19 changes: 11 additions & 8 deletions tests/python/contrib/test_cmsisnn/test_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,14 +35,12 @@
from utils import (
skip_if_no_reference_system,
make_module,
create_conv2d_tflite_relay_models,
get_range_for_dtype_str,
get_same_padding,
get_conv2d_qnn_params,
make_qnn_relu,
assert_partitioned_function,
assert_no_external_function,
generate_ref_data_tflite,
)


Expand Down Expand Up @@ -314,25 +312,30 @@ def test_conv2d_int8_tflite(ifm_shape, kernel_shape, strides, dilation, padding,
interface_api = "c"
use_unpacked_api = True
test_runner = AOT_USMP_CORSTONE300_RUNNER

dtype = "int8"
tflite_model, relay_mod, params = create_conv2d_tflite_relay_models(
ifm_shape, kernel_shape, strides, dilation, padding, activation, dtype

from tvm.relay.testing.tflite import TFLiteModel

tfl_model = TFLiteModel(dtype)
conv2d_function = tfl_model.create_conv2d_single(
kernel_shape, strides, padding, dilation, activation
)
tfl_model.create_tflite_model(conv2d_function, [ifm_shape])
relay_mod, relay_params = tfl_model.convert_to_relay()

cmsisnn_mod = cmsisnn.partition_for_cmsisnn(relay_mod, params)
cmsisnn_mod = cmsisnn.partition_for_cmsisnn(relay_mod, relay_params)

# validate pattern matching
assert_partitioned_function(relay_mod, cmsisnn_mod)

# validate CMSIS-NN output against TFLite output
input_map, output_map, output_tolerance = generate_ref_data_tflite(tflite_model)
input_map, output_map, output_tolerance = tfl_model.generate_reference_data()
compile_and_run(
AOTTestModel(
module=cmsisnn_mod,
inputs=input_map,
outputs=output_map,
params=params,
params=relay_params,
output_tolerance=output_tolerance,
),
test_runner,
Expand Down
131 changes: 0 additions & 131 deletions tests/python/contrib/test_cmsisnn/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,134 +225,3 @@ def make_qnn_relu(expr, fused_activation_fn, scale, zero_point, dtype):
)
if fused_activation_fn == "RELU":
return tvm.relay.op.clip(expr, a_min=max(qmin, quantize(0.0)), a_max=qmax)


def generate_random_input_data(seed, shape, dtype):
"""
Generates randomized input numpy arrays based on shape and dtype
"""
random_state = np.random.RandomState(seed)
if dtype == np.float32:
return random_state.uniform(-1, 1, size).astype(dtype)
else:
low = np.iinfo(dtype).min
high = np.iinfo(dtype).max + 1
return random_state.randint(low, high, shape, dtype)


def generate_ref_data_tflite(model):
"""
This method uses TFLite reference kernels to generate reference output.
Random input generator is used to get the input data.
It returns randomized inputs and reference outputs.
"""
import tensorflow as tf
from distutils.version import LooseVersion

output_tolerance = None
if tf.__version__ < LooseVersion("2.5.0"):
output_tolerance = 1
interpreter = tf.lite.Interpreter(model_content=model)
else:
from tensorflow.lite.python.interpreter import OpResolverType

output_tolerance = 0
interpreter = tf.lite.Interpreter(
model_content=model,
experimental_op_resolver_type=OpResolverType.BUILTIN_REF,
experimental_preserve_all_tensors=False,
)

interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Generate predictable randomized input
seed = 0
input_data = {}
for input_detail in input_details:
input_values = generate_random_input_data(
seed, input_detail["shape"], input_detail["dtype"]
)
interpreter.set_tensor(input_detail["index"], input_values)
input_data.update({input_detail["name"]: input_values})

interpreter.invoke()

# Obtain the expected output from interpreter
expected_output_data = {}
for output_detail in output_details:
expected_output_data.update(
{output_detail["name"]: interpreter.get_tensor(output_detail["index"])}
)

return input_data, expected_output_data, output_tolerance


def create_conv2d_tflite_model(ifm_shape, kernel_shape, strides, dilation, padding, activation):
"""This method prepares TFlite graph with a single Conv2d layer"""
import tensorflow as tf

class Model(tf.Module):
@tf.function
def tf_function(self, x):
# Use tf.nn API to create the model
tf_strides = [1, strides[0], strides[1], 1]
op = tf.nn.conv2d(
x,
filters=tf.constant(
np.random.uniform(size=[kernel_shape[0], kernel_shape[1], 3, 3]),
dtype=tf.float32,
),
strides=tf_strides,
padding=padding,
dilations=dilation,
)
if activation:
op = tf.nn.relu(op)
return op

model = Model()
concrete_func = model.tf_function.get_concrete_function(
tf.TensorSpec(ifm_shape, dtype=tf.float32)
)

def representative_dataset():
for _ in range(100):
data = np.random.rand(*tuple(ifm_shape))
yield [data.astype(np.float32)]

converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
tflite_model = converter.convert()
return tflite_model


def create_conv2d_tflite_relay_models(
ifm_shape, kernel_shape, strides, dilation, padding, activation, dtype
):
"""
This method creates a conv2d TFLite layer and prepared TFLite model from it.
Converts that into the Relay module and params.
Returns TFLite model, Relay module and params.
"""
pytest.importorskip("tflite")
import tflite.Model

serialized_tflite_model = create_conv2d_tflite_model(
ifm_shape, kernel_shape, strides, dilation, padding, activation
)

tflite_model = tflite.Model.Model.GetRootAsModel(serialized_tflite_model, 0)

relay_module, params = relay.frontend.from_tflite(
tflite_model,
shape_dict={"input": ifm_shape},
dtype_dict={"input": dtype},
)

return serialized_tflite_model, relay_module, params