Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TVM Vertical Integration with PyTorch #11911

Merged
merged 28 commits into from
Jul 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
257 changes: 257 additions & 0 deletions apps/pt_tvmdsoop/tests/test_as_torch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,257 @@
#!/usr/bin/env python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test script for tvm torch module"""
import numpy as np

import torch
import torch.nn

import tvm
from tvm.meta_schedule.tune import TuneConfig
from tvm.target.target import Target
import tvm.testing
from tvm.contrib.torch import as_torch
from tvm.script import tir as T


@as_torch
def matmul(M: int, N: int, K: int, dtype: str):
@T.prim_func
def main(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, [M, K], dtype=dtype)
B = T.match_buffer(b, [N, K], dtype=dtype)
C = T.match_buffer(c, [M, N], dtype=dtype)
for i, j, k in T.grid(M, N, K):
with T.block():
vi, vj, vk = T.axis.remap("SSR", [i, j, k])
with T.init():
C[vi, vj] = T.float32(0)
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]

return main


@as_torch
@tvm.script.ir_module
class ModuleGPU:
@T.prim_func
def main(A: T.Buffer[8, "float32"], B: T.Buffer[8, "float32"]) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
for i_0 in T.thread_binding(2, thread="blockIdx.x"):
for i_2 in T.thread_binding(2, thread="threadIdx.x"):
for i_1 in T.serial(2):
with T.block("B"):
vi = T.axis.spatial(8, i_0 * 4 + i_1 * 2 + i_2)
T.reads(A[vi])
T.writes(B[vi])
B[vi] = A[vi] + T.float32(1)


@as_torch
@T.prim_func
def func_with_part_access_region(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, [128, 128])
B = T.match_buffer(b, [128, 128])
C = T.match_buffer(c, [128, 128])

with T.block():
for i, j in T.grid(128, 128):
with T.block("s1"):
vi, vj = T.axis.remap("SS", [i, j])
T.reads(A[vi, vj])
B[vi, vj] = A[vi, vj] + T.float32(1)

for i, j in T.grid(128, 128):
with T.block("s2"):
vi, vj = T.axis.remap("SS", [i, j])
T.writes(C[vi, vj])
C[vi, vj] = B[vi, vj] + T.float32(1)


config = TuneConfig(
strategy="replay_trace",
num_trials_per_iter=128,
max_trials_per_task=128,
max_trials_global=128,
)


@as_torch
@tvm.script.ir_module
class MyModule:
@T.prim_func
def main(a: T.handle, b: T.handle):
# We exchange data between function by handles, which are similar to pointer.
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# Create buffer from handles.
A = T.match_buffer(a, (8,), dtype="float32")
B = T.match_buffer(b, (8,), dtype="float32")
for i in range(8):
# A block is an abstraction for computation.
with T.block("B"):
# Define a spatial block iterator and bind it to value i.
vi = T.axis.spatial(8, i)
B[vi] = A[vi] + 1.0


@as_torch
@T.prim_func
def loop_split(a: T.handle, b: T.handle) -> None:
A = T.match_buffer(a, [128, 128], dtype="float32")
B = T.match_buffer(b, [128], dtype="float32")
for i, ko in T.grid(128, 4):
for ki in T.thread_binding(0, 32, thread="threadIdx.x"):
with T.block("B"):
vi = T.axis.S(128, i)
vk = T.axis.R(128, ko * 32 + ki)
T.reads([B[vi], A[vi, vk]])
T.writes([B[vi]])
with T.init():
B[vi] = T.float32(0)
B[vi] = B[vi] + A[vi, vk]


@as_torch
def elementwise_with_root(M: int, N: int, dtype: str):
@T.prim_func
def f(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, [M, N])
B = T.match_buffer(b, [M, N])
C = T.match_buffer(c, [M, N])

with T.block():
for i, j in T.grid(M, N):
with T.block("s1"):
vi, vj = T.axis.remap("SS", [i, j])
B[vi, vj] = A[vi, vj] + T.float32(1)
for i, j in T.grid(M, N):
with T.block("s2"):
vi, vj = T.axis.remap("SS", [i, j])
C[vi, vj] = B[vi, vj] + T.float32(1)

return f


class MinuesOnes(torch.nn.Module):
def __init__(self):
super(MinuesOnes, self).__init__()
self.engine = MyModule

def forward(self, *input):
self.engine.forward(*input)
return input[-1] - 1


def test_tvmscript_torch_matmul():
s1 = np.random.rand(128, 128).astype("float32")
s2 = np.random.rand(128, 128).astype("float32")
s3 = np.random.rand(128, 128).astype("float32")

q1 = torch.from_numpy(s1)
q2 = torch.from_numpy(s2)
q3 = torch.from_numpy(s3)

numpy_result = np.matmul(s1, np.transpose(s2))

nn_module = matmul(128, 128, 128, "float32")

nn_module(q1, q2, q3)

tvm.testing.assert_allclose(q3.numpy(), numpy_result, atol=1e-5, rtol=1e-5)


def test_tvmscript_torch_decorator():
q1 = torch.arange(8).type(torch.float32)
q2 = torch.zeros((8,), dtype=torch.float32)

MyModule(q1, q2)

tvm.testing.assert_allclose(q2.numpy(), (q1 + 1).numpy(), atol=1e-5, rtol=1e-5)


def test_tvmscript_torch_gpu():
cuda0 = torch.device("cuda:0")
q1 = torch.arange(8, device=cuda0).type(torch.float32)
q2 = torch.zeros((8,), dtype=torch.float32, device=cuda0)

ModuleGPU(q1, q2)

tvm.testing.assert_allclose(q2.cpu().numpy(), (q1 + 1).cpu().numpy(), atol=1e-5, rtol=1e-5)


def test_torch_with_tvmscript():
ref_result = np.arange(8).astype("float32")

q1 = torch.arange(8).type(torch.float32)
q2 = torch.zeros((8,), dtype=torch.float32)

nn_module = MinuesOnes()

ret = nn_module.forward(q1, q2)

tvm.testing.assert_allclose(ret.numpy(), ref_result, atol=1e-5, rtol=1e-5)


def test_tvmscript_torch_func_with_part_access_region():
a1 = torch.rand(128, 128)
a2 = torch.zeros(128, 128)
a3 = torch.zeros(128, 128)

result = a1 + 2

func_with_part_access_region.tune()
func_with_part_access_region(a1, a2, a3)

tvm.testing.assert_allclose(a3.numpy(), result.numpy(), atol=1e-5, rtol=1e-5)


def test_tvmscript_torch_loop_split():
x = torch.rand(128, 128).cuda()
y = torch.zeros(128).cuda()

result = torch.sum(x.cpu(), dim=1).numpy()

loop_split.tune(config, Target("nvidia/geforce-rtx-3070"))
loop_split(x, y)

tvm.testing.assert_allclose(y.cpu().numpy(), result, atol=1e-5, rtol=1e-5)


def test_tvmscript_torch_elementwise_with_root():
a1 = torch.rand(128, 128)
a2 = torch.zeros(128, 128)
a3 = torch.zeros(128, 128)

result = a1 + 2

func = elementwise_with_root(128, 128, "float32")
func.tune(config)
func(a1, a2, a3)

tvm.testing.assert_allclose(a3.numpy(), result.numpy(), atol=1e-5, rtol=1e-5)


if __name__ == "__main__":
test_tvmscript_torch_matmul()
test_tvmscript_torch_decorator()
test_tvmscript_torch_gpu()
test_torch_with_tvmscript()
test_tvmscript_torch_func_with_part_access_region()
test_tvmscript_torch_loop_split()
test_tvmscript_torch_elementwise_with_root()
Loading