-
Notifications
You must be signed in to change notification settings - Fork 3.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Hexagon] Create test examples to show parallelization #12654
Changes from all commits
4e5b6dc
0185ec0
52bb1b1
ba8da1e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" | ||
Test parallelizing HVX workloads and compare them to single thread examples. | ||
""" | ||
import numpy as np | ||
import tvm | ||
|
||
from tvm.script import tir as T | ||
from numpy.random import default_rng | ||
|
||
TEST_OUTPUT_TEMPLATE = "Test {} with {} operations... \n -Single Thread: {} ms \n -Parallel: {} ms\n -Speedup: {}x\n" | ||
|
||
|
||
def get_vrmpy_shape_dtypes(operations): | ||
return ((operations, 128), "uint8", (operations, 128), "uint8", (operations, 32), "int32") | ||
|
||
|
||
def get_vmpy_vadd_shape_dtype(operations): | ||
return ((operations, 128), "uint8", (operations, 128), "uint8", (operations, 128), "int16") | ||
|
||
|
||
def vmpy_expected_producer(shape, a, b): | ||
expected = np.zeros(shape, dtype="int16") | ||
for n in range(shape[0]): | ||
for i in range(0, 128, 2): | ||
expected[n, i // 2] = np.int16(a[n, i]) * np.int16(b[n, i]) | ||
for i in range(1, 128, 2): | ||
expected[n, i // 2 + 64] = np.int16(a[n, i]) * np.int16(b[n, i]) | ||
return expected | ||
|
||
|
||
def vadd_expected_producer(shape, a, b): | ||
expected = np.zeros(shape, dtype="int16") | ||
for n in range(shape[0]): | ||
for i in range(0, 128, 2): | ||
expected[n, i // 2] = np.int16(a[n, i]) + np.int16(b[n, i]) | ||
for i in range(1, 128, 2): | ||
expected[n, i // 2 + 64] = np.int16(a[n, i]) + np.int16(b[n, i]) | ||
return expected | ||
|
||
|
||
def vrmpy_expected_producer(shape, a, b): | ||
expected = np.zeros(shape, dtype="int32") | ||
for n in range(shape[0]): | ||
for i in range(32): | ||
for r in range(4): | ||
expected[n, i] = expected[n, i] + np.uint32(a[n, i * 4 + r]) * np.uint32( | ||
b[n, i * 4 + r] | ||
) | ||
return expected | ||
|
||
|
||
def get_vmpy_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations, 128], dtype="uint8") | ||
B = T.match_buffer(b, [operations, 128], dtype="uint8") | ||
C = T.match_buffer(c, [operations, 128], dtype="int16") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn, T.ramp(0, 1, 128)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vmpybusv.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int16x128", | ||
) | ||
|
||
return operator | ||
|
||
|
||
def get_vadd_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations, 128], dtype="uint8") | ||
B = T.match_buffer(b, [operations, 128], dtype="uint8") | ||
C = T.match_buffer(c, [operations, 128], dtype="int16") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn, T.ramp(0, 1, 128)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vaddubh.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int16x128", | ||
) | ||
|
||
return operator | ||
|
||
|
||
def get_vrmpy_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations, 128], dtype="uint8") | ||
B = T.match_buffer(b, [operations, 128], dtype="uint8") | ||
C = T.match_buffer(c, [operations, 32], dtype="int32") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int32x32", | ||
) | ||
|
||
return operator | ||
|
||
|
||
def evaluate(hexagon_session, shape_dtypes, expected_output_producer, sch): | ||
a_shape, a_dtype, b_shape, b_dtype, c_shape, c_dtype = shape_dtypes | ||
|
||
target_hexagon = tvm.target.hexagon("v68") | ||
func_tir = tvm.build( | ||
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon) | ||
) | ||
module = hexagon_session.load_module(func_tir) | ||
|
||
rng = default_rng() | ||
a = rng.integers(0, 16, a_shape, dtype=a_dtype) | ||
b = rng.integers(0, 16, b_shape, dtype=b_dtype) | ||
c = np.zeros(c_shape, dtype=c_dtype) | ||
|
||
a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device) | ||
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device) | ||
c_hexagon = tvm.runtime.ndarray.array(c, device=hexagon_session.device) | ||
|
||
# These are reduced for CI but number=100 and repeat=10 does a good job of removing noise. | ||
number = 1 | ||
repeat = 1 | ||
|
||
timer = module.time_evaluator( | ||
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat | ||
) | ||
runtime = timer(a_hexagon, b_hexagon, c_hexagon) | ||
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output_producer(c_shape, a, b)) | ||
|
||
return round(runtime.mean * 1000, 6) | ||
|
||
|
||
class TestMatMulVec: | ||
|
||
( | ||
operation_name, | ||
operator_producer, | ||
shape_dtypes_producer, | ||
expected_output_producer, | ||
) = tvm.testing.parameters( | ||
("vrmpy", get_vrmpy_operator, get_vrmpy_shape_dtypes, vrmpy_expected_producer), | ||
("vmpy", get_vmpy_operator, get_vmpy_vadd_shape_dtype, vmpy_expected_producer), | ||
("vadd", get_vadd_operator, get_vmpy_vadd_shape_dtype, vadd_expected_producer), | ||
) | ||
|
||
# Experimentally best split factor but all multiples of 4 perform pretty well. | ||
# This is because there are 4 HVX untis available on the device and pipelining | ||
# works best with parallels of the number of available HVX. | ||
split_factor = tvm.testing.parameter(4) | ||
|
||
# Removed most of these to speedup CI. | ||
operation_count = tvm.testing.parameter( | ||
128, | ||
# 256, | ||
# 512, | ||
# 1024, # Single thread runs faster since L2 cache can handle the entire request quickly | ||
# 2048, | ||
# 4096, # Significant performance degredation once the inputs and outputs cannot all fit in L2 | ||
# 8192, | ||
# 16384, | ||
) | ||
|
||
@tvm.testing.requires_hexagon | ||
def test( | ||
self, | ||
hexagon_session, | ||
operation_count, | ||
operation_name, | ||
operator_producer, | ||
shape_dtypes_producer, | ||
expected_output_producer, | ||
split_factor, | ||
): | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operation_count)) | ||
single_thread_runtime = evaluate( | ||
hexagon_session, shape_dtypes_producer(operation_count), expected_output_producer, sch | ||
) | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operation_count)) | ||
block = sch.get_block("C") | ||
b = sch.get_loops(block) | ||
bo, _ = sch.split(b[0], factors=[split_factor, None]) | ||
sch.parallel(bo) | ||
|
||
parallel_runtime = evaluate( | ||
hexagon_session, shape_dtypes_producer(operation_count), expected_output_producer, sch | ||
) | ||
|
||
speedup = round(single_thread_runtime / parallel_runtime, 2) | ||
|
||
print( | ||
TEST_OUTPUT_TEMPLATE.format( | ||
operation_name, operation_count, single_thread_runtime, parallel_runtime, speedup | ||
) | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
tvm.testing.main() |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" Test parallelism for multiple different scalar workloads. """ | ||
|
||
import numpy as np | ||
import tvm | ||
|
||
from tvm.script import tir as T | ||
from numpy.random import default_rng | ||
|
||
TEST_OUTPUT_TEMPLATE = "Test {} with {} operations... \n -Single Thread: {} ms \n -Parallel: {} ms\n -Speedup: {}x\n" | ||
|
||
|
||
def get_add_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations], dtype="float64") | ||
B = T.match_buffer(b, [operations], dtype="float64") | ||
C = T.match_buffer(c, [operations], dtype="float64") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn] = A[vn] + B[vn] | ||
|
||
return operator | ||
|
||
|
||
def get_multiply_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations], dtype="float64") | ||
B = T.match_buffer(b, [operations], dtype="float64") | ||
C = T.match_buffer(c, [operations], dtype="float64") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn] = A[vn] * B[vn] | ||
|
||
return operator | ||
|
||
|
||
def get_sub_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations], dtype="float64") | ||
B = T.match_buffer(b, [operations], dtype="float64") | ||
C = T.match_buffer(c, [operations], dtype="float64") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn] = A[vn] - B[vn] | ||
|
||
return operator | ||
|
||
|
||
def evaluate(hexagon_session, operations, expected, sch): | ||
shape = operations | ||
dtype = "float64" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Why choose There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yeah, thats the idea, I know that hvx does not support float64 |
||
|
||
target_hexagon = tvm.target.hexagon("v68") | ||
func_tir = tvm.build( | ||
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon) | ||
) | ||
module = hexagon_session.load_module(func_tir) | ||
|
||
rng = default_rng() | ||
a = rng.random(shape, dtype=dtype) | ||
b = rng.random(shape, dtype=dtype) | ||
c = np.zeros(shape, dtype=dtype) | ||
|
||
a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device) | ||
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device) | ||
c_hexagon = tvm.runtime.ndarray.array(c, device=hexagon_session.device) | ||
|
||
# These are reduced for CI but number=100 and repeat=10 does a good job of removing noise. | ||
number = 1 | ||
repeat = 1 | ||
|
||
timer = module.time_evaluator( | ||
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat | ||
) | ||
runtime = timer(a_hexagon, b_hexagon, c_hexagon) | ||
|
||
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected(a, b)) | ||
|
||
return round(runtime.mean * 1000, 6) | ||
|
||
|
||
class TestMatMulVec: | ||
|
||
(operation_name, operator_producer, expected_output_producer,) = tvm.testing.parameters( | ||
("add", get_add_operator, (lambda a, b: a + b)), | ||
("mul", get_multiply_operator, (lambda a, b: a * b)), | ||
("sub", get_sub_operator, (lambda a, b: a - b)), | ||
) | ||
|
||
# Removed most of these to speedup CI. | ||
operations = tvm.testing.parameter( | ||
128, | ||
# 256, | ||
# 512, | ||
# 1024, # Single thread runs faster since L2 cache can handle the entire request quickly | ||
# 2048, | ||
# 4096, # Significant performance degredation once the inputs and outputs cannot all fit in L2 | ||
# 8192, | ||
# 16384, | ||
) | ||
|
||
split_factor = tvm.testing.parameter(4) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same comment; can we parameterize the op type to avoid code duplication? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Made the changes |
||
|
||
@tvm.testing.requires_hexagon | ||
def test_add( | ||
self, | ||
hexagon_session, | ||
operation_name, | ||
operator_producer, | ||
expected_output_producer, | ||
operations, | ||
split_factor, | ||
): | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operations)) | ||
single_thread_runtime = evaluate(hexagon_session, operations, expected_output_producer, sch) | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operations)) | ||
block = sch.get_block("C") | ||
b = sch.get_loops(block) | ||
bo, _ = sch.split(b[0], factors=[split_factor, None]) | ||
sch.parallel(bo) | ||
parallel_runtime = evaluate(hexagon_session, operations, expected_output_producer, sch) | ||
|
||
speedup = round(single_thread_runtime / parallel_runtime, 2) | ||
print( | ||
TEST_OUTPUT_TEMPLATE.format( | ||
operation_name, operations, single_thread_runtime, parallel_runtime, speedup | ||
) | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
tvm.testing.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you find a way to parameterize the operation type (vrmpy, vmpy, vadd) and create just one test case? There is a lot of duplicated code in the 3 test cases below?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good suggestion! Ill see if I can do this!
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Made the changes