Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hexagon] Create test examples to show parallelization #12654

Merged
merged 4 commits into from
Sep 19, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
230 changes: 230 additions & 0 deletions tests/python/contrib/test_hexagon/test_parallel_hvx.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Test parallelizing HVX workloads and compare them to single thread examples.
"""
import numpy as np
import tvm

from tvm.script import tir as T
from numpy.random import default_rng

TEST_OUTPUT_TEMPLATE = "Test {} with {} operations... \n -Single Thread: {} ms \n -Parallel: {} ms\n -Speedup: {}x\n"


def get_vrmpy_shape_dtypes(operations):
return ((operations, 128), "uint8", (operations, 128), "uint8", (operations, 32), "int32")


def get_vmpy_vadd_shape_dtype(operations):
return ((operations, 128), "uint8", (operations, 128), "uint8", (operations, 128), "int16")


def vmpy_expected_producer(shape, a, b):
expected = np.zeros(shape, dtype="int16")
for n in range(shape[0]):
for i in range(0, 128, 2):
expected[n, i // 2] = np.int16(a[n, i]) * np.int16(b[n, i])
for i in range(1, 128, 2):
expected[n, i // 2 + 64] = np.int16(a[n, i]) * np.int16(b[n, i])
return expected


def vadd_expected_producer(shape, a, b):
expected = np.zeros(shape, dtype="int16")
for n in range(shape[0]):
for i in range(0, 128, 2):
expected[n, i // 2] = np.int16(a[n, i]) + np.int16(b[n, i])
for i in range(1, 128, 2):
expected[n, i // 2 + 64] = np.int16(a[n, i]) + np.int16(b[n, i])
return expected


def vrmpy_expected_producer(shape, a, b):
expected = np.zeros(shape, dtype="int32")
for n in range(shape[0]):
for i in range(32):
for r in range(4):
expected[n, i] = expected[n, i] + np.uint32(a[n, i * 4 + r]) * np.uint32(
b[n, i * 4 + r]
)
return expected


def get_vmpy_operator(operations):
@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [operations, 128], dtype="uint8")
B = T.match_buffer(b, [operations, 128], dtype="uint8")
C = T.match_buffer(c, [operations, 128], dtype="int16")
for n in T.grid(operations):
with T.block("C"):
vn = T.axis.remap("S", [n])
C[vn, T.ramp(0, 1, 128)] = T.call_llvm_intrin(
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vmpybusv.128B"),
T.uint32(2),
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
dtype="int16x128",
)

return operator


def get_vadd_operator(operations):
@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [operations, 128], dtype="uint8")
B = T.match_buffer(b, [operations, 128], dtype="uint8")
C = T.match_buffer(c, [operations, 128], dtype="int16")
for n in T.grid(operations):
with T.block("C"):
vn = T.axis.remap("S", [n])
C[vn, T.ramp(0, 1, 128)] = T.call_llvm_intrin(
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vaddubh.128B"),
T.uint32(2),
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
dtype="int16x128",
)

return operator


def get_vrmpy_operator(operations):
@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [operations, 128], dtype="uint8")
B = T.match_buffer(b, [operations, 128], dtype="uint8")
C = T.match_buffer(c, [operations, 32], dtype="int32")
for n in T.grid(operations):
with T.block("C"):
vn = T.axis.remap("S", [n])
C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin(
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"),
T.uint32(2),
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
dtype="int32x32",
)

return operator


def evaluate(hexagon_session, shape_dtypes, expected_output_producer, sch):
a_shape, a_dtype, b_shape, b_dtype, c_shape, c_dtype = shape_dtypes

target_hexagon = tvm.target.hexagon("v68")
func_tir = tvm.build(
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon)
)
module = hexagon_session.load_module(func_tir)

rng = default_rng()
a = rng.integers(0, 16, a_shape, dtype=a_dtype)
b = rng.integers(0, 16, b_shape, dtype=b_dtype)
c = np.zeros(c_shape, dtype=c_dtype)

a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device)
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device)
c_hexagon = tvm.runtime.ndarray.array(c, device=hexagon_session.device)

# These are reduced for CI but number=100 and repeat=10 does a good job of removing noise.
number = 1
repeat = 1

timer = module.time_evaluator(
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat
)
runtime = timer(a_hexagon, b_hexagon, c_hexagon)
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output_producer(c_shape, a, b))

return round(runtime.mean * 1000, 6)


class TestMatMulVec:

(
operation_name,
operator_producer,
shape_dtypes_producer,
expected_output_producer,
) = tvm.testing.parameters(
("vrmpy", get_vrmpy_operator, get_vrmpy_shape_dtypes, vrmpy_expected_producer),
("vmpy", get_vmpy_operator, get_vmpy_vadd_shape_dtype, vmpy_expected_producer),
("vadd", get_vadd_operator, get_vmpy_vadd_shape_dtype, vadd_expected_producer),
)

# Experimentally best split factor but all multiples of 4 perform pretty well.
# This is because there are 4 HVX untis available on the device and pipelining
# works best with parallels of the number of available HVX.
split_factor = tvm.testing.parameter(4)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you find a way to parameterize the operation type (vrmpy, vmpy, vadd) and create just one test case? There is a lot of duplicated code in the 3 test cases below?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good suggestion! Ill see if I can do this!

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Made the changes


# Removed most of these to speedup CI.
operation_count = tvm.testing.parameter(
128,
# 256,
# 512,
# 1024, # Single thread runs faster since L2 cache can handle the entire request quickly
# 2048,
# 4096, # Significant performance degredation once the inputs and outputs cannot all fit in L2
# 8192,
# 16384,
)

@tvm.testing.requires_hexagon
def test(
self,
hexagon_session,
operation_count,
operation_name,
operator_producer,
shape_dtypes_producer,
expected_output_producer,
split_factor,
):

sch = tvm.tir.Schedule(operator_producer(operation_count))
single_thread_runtime = evaluate(
hexagon_session, shape_dtypes_producer(operation_count), expected_output_producer, sch
)

sch = tvm.tir.Schedule(operator_producer(operation_count))
block = sch.get_block("C")
b = sch.get_loops(block)
bo, _ = sch.split(b[0], factors=[split_factor, None])
sch.parallel(bo)

parallel_runtime = evaluate(
hexagon_session, shape_dtypes_producer(operation_count), expected_output_producer, sch
)

speedup = round(single_thread_runtime / parallel_runtime, 2)

print(
TEST_OUTPUT_TEMPLATE.format(
operation_name, operation_count, single_thread_runtime, parallel_runtime, speedup
)
)


if __name__ == "__main__":
tvm.testing.main()
159 changes: 159 additions & 0 deletions tests/python/contrib/test_hexagon/test_parallel_scalar.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

""" Test parallelism for multiple different scalar workloads. """

import numpy as np
import tvm

from tvm.script import tir as T
from numpy.random import default_rng

TEST_OUTPUT_TEMPLATE = "Test {} with {} operations... \n -Single Thread: {} ms \n -Parallel: {} ms\n -Speedup: {}x\n"


def get_add_operator(operations):
@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [operations], dtype="float64")
B = T.match_buffer(b, [operations], dtype="float64")
C = T.match_buffer(c, [operations], dtype="float64")
for n in T.grid(operations):
with T.block("C"):
vn = T.axis.remap("S", [n])
C[vn] = A[vn] + B[vn]

return operator


def get_multiply_operator(operations):
@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [operations], dtype="float64")
B = T.match_buffer(b, [operations], dtype="float64")
C = T.match_buffer(c, [operations], dtype="float64")
for n in T.grid(operations):
with T.block("C"):
vn = T.axis.remap("S", [n])
C[vn] = A[vn] * B[vn]

return operator


def get_sub_operator(operations):
@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, [operations], dtype="float64")
B = T.match_buffer(b, [operations], dtype="float64")
C = T.match_buffer(c, [operations], dtype="float64")
for n in T.grid(operations):
with T.block("C"):
vn = T.axis.remap("S", [n])
C[vn] = A[vn] - B[vn]

return operator


def evaluate(hexagon_session, operations, expected, sch):
shape = operations
dtype = "float64"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why choose float64 here? Is the goal to try to avoid vectorization?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah, thats the idea, I know that hvx does not support float64


target_hexagon = tvm.target.hexagon("v68")
func_tir = tvm.build(
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon)
)
module = hexagon_session.load_module(func_tir)

rng = default_rng()
a = rng.random(shape, dtype=dtype)
b = rng.random(shape, dtype=dtype)
c = np.zeros(shape, dtype=dtype)

a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device)
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device)
c_hexagon = tvm.runtime.ndarray.array(c, device=hexagon_session.device)

# These are reduced for CI but number=100 and repeat=10 does a good job of removing noise.
number = 1
repeat = 1

timer = module.time_evaluator(
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat
)
runtime = timer(a_hexagon, b_hexagon, c_hexagon)

tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected(a, b))

return round(runtime.mean * 1000, 6)


class TestMatMulVec:

(operation_name, operator_producer, expected_output_producer,) = tvm.testing.parameters(
("add", get_add_operator, (lambda a, b: a + b)),
("mul", get_multiply_operator, (lambda a, b: a * b)),
("sub", get_sub_operator, (lambda a, b: a - b)),
)

# Removed most of these to speedup CI.
operations = tvm.testing.parameter(
128,
# 256,
# 512,
# 1024, # Single thread runs faster since L2 cache can handle the entire request quickly
# 2048,
# 4096, # Significant performance degredation once the inputs and outputs cannot all fit in L2
# 8192,
# 16384,
)

split_factor = tvm.testing.parameter(4)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same comment; can we parameterize the op type to avoid code duplication?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Made the changes


@tvm.testing.requires_hexagon
def test_add(
self,
hexagon_session,
operation_name,
operator_producer,
expected_output_producer,
operations,
split_factor,
):

sch = tvm.tir.Schedule(operator_producer(operations))
single_thread_runtime = evaluate(hexagon_session, operations, expected_output_producer, sch)

sch = tvm.tir.Schedule(operator_producer(operations))
block = sch.get_block("C")
b = sch.get_loops(block)
bo, _ = sch.split(b[0], factors=[split_factor, None])
sch.parallel(bo)
parallel_runtime = evaluate(hexagon_session, operations, expected_output_producer, sch)

speedup = round(single_thread_runtime / parallel_runtime, 2)
print(
TEST_OUTPUT_TEMPLATE.format(
operation_name, operations, single_thread_runtime, parallel_runtime, speedup
)
)


if __name__ == "__main__":
tvm.testing.main()