Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoTVM][Testing] Add tune_relay scripts #12685

Merged
merged 1 commit into from
Sep 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions python/tvm/autotvm/testing/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Testing utilities for autotvm"""
263 changes: 263 additions & 0 deletions python/tvm/autotvm/testing/tune_relay.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,263 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=missing-docstring
import argparse
import json
import os
import warnings
from distutils.util import strtobool

import tvm
from tvm import autotvm
from tvm import meta_schedule as ms
from tvm import relay
from tvm.autotvm.graph_tuner import DPTuner
from tvm.autotvm.tuner import XGBTuner
from tvm.meta_schedule.testing.custom_builder_runner import run_module_via_rpc
from tvm.meta_schedule.testing.relay_workload import get_network
from tvm.meta_schedule.testing.tune_utils import create_timer, generate_input_data
from tvm.support import describe


def _parse_args():
args = argparse.ArgumentParser()
junrushao marked this conversation as resolved.
Show resolved Hide resolved
args.add_argument(
"--workload",
type=str,
required=True,
help="The name of the workload to tune. Supported models: "
"https://github.com/apache/tvm/blob/main/python/tvm/meta_schedule/testing/relay_workload.py#L303-L322", # pylint: disable=line-too-long
)
args.add_argument(
"--input-shape",
type=str,
required=True,
help="The input shape of the workload. Example: '[1, 3, 224, 224]'",
)
args.add_argument(
"--target",
type=str,
required=True,
help="The target device to tune. "
"Example: 'aws/cpu/c5.9xlarge', 'nvidia/nvidia-v100', 'nvidia/geforce-rtx-3090'",
)
args.add_argument(
"--num-trials",
type=int,
required=True,
help="The number of trials per kernel. Example: 800",
)
args.add_argument(
"--rpc-host",
type=str,
required=True,
help="The host address of the RPC tracker. Example: 192.168.6.66",
)
args.add_argument(
"--rpc-port",
type=int,
required=True,
help="The port of the RPC tracker. Example: 4445",
)
args.add_argument(
"--rpc-key",
type=str,
required=True,
help="The key of the RPC tracker. Example: '3090ti'",
)
args.add_argument(
"--work-dir",
type=str,
required=True,
help="The working directory to store the tuning logs. Example: '/tmp/tune_relay'",
)
args.add_argument(
"--layout",
type=str,
default=None,
help="The layout of the workload. Example: 'NCHW', 'NHWC'",
)
args.add_argument(
"--cache-dir",
type=str,
default=None,
)
args.add_argument(
"--number",
type=int,
default=3,
)
args.add_argument(
"--repeat",
type=int,
default=1,
)
args.add_argument(
"--min-repeat-ms",
type=int,
default=100,
)
args.add_argument(
"--cpu-flush",
type=lambda x: bool(strtobool(x)),
help="example: True / False",
required=True,
)
args.add_argument(
"--graph-tuner",
type=lambda x: bool(strtobool(x)),
help="example: True / False",
required=True,
)
args.add_argument(
"--backend",
type=str,
choices=["graph", "vm"],
help="example: graph / vm",
required=True,
)
parsed = args.parse_args()
parsed.target = tvm.target.Target(parsed.target)
parsed.input_shape = json.loads(parsed.input_shape)
parsed.rpc_config = ms.runner.RPCConfig(
tracker_host=parsed.rpc_host,
tracker_port=parsed.rpc_port,
tracker_key=parsed.rpc_key,
session_timeout_sec=600,
)
if ARGS.target.kind.name != "llvm" and ARGS.graph_tuner:
raise ValueError("GraphTuner only supports llvm target")
if ARGS.target.kind.name != "llvm" and ARGS.cpu_flush:
raise ValueError("cpu_flush only supports llvm target")
if ARGS.target.kind.name == "llvm" and not ARGS.cpu_flush:
warnings.warn("cpu_flush is not enabled for llvm target")
return parsed


ARGS = _parse_args()


def main():
log_file = os.path.join(ARGS.work_dir, f"{ARGS.workload}.json")
graph_opt_sch_file = os.path.join(ARGS.work_dir, f"{ARGS.workload}_graph_opt.log")
measure_option = autotvm.measure_option(
builder=autotvm.LocalBuilder(),
runner=autotvm.RPCRunner(
key=ARGS.rpc_key,
host=ARGS.rpc_host,
port=ARGS.rpc_port,
number=ARGS.number,
repeat=ARGS.repeat,
min_repeat_ms=ARGS.min_repeat_ms,
enable_cpu_cache_flush=ARGS.cpu_flush,
),
)
describe()
print(f"Workload: {ARGS.workload}")
mod, params, (input_name, input_shape, input_dtype) = get_network(
ARGS.workload,
ARGS.input_shape,
layout=ARGS.layout,
cache_dir=ARGS.cache_dir,
)
input_info = [
{
"name": input_name,
"shape": input_shape,
"dtype": input_dtype,
},
]
input_data = {
item["name"]: generate_input_data(item["shape"], item["dtype"]) for item in input_info
}
for item in input_info:
print(f" input_name : {item['name']}")
print(f" input_shape: {item['shape']}")
print(f" input_dtype: {item['dtype']}")

with ms.Profiler() as profiler:
with ms.Profiler.timeit("TaskExtraction"):
# extract workloads from relay program
tasks = autotvm.task.extract_from_program(
mod["main"],
target=ARGS.target,
params=params,
ops=(
relay.op.get("nn.conv2d"),
relay.op.get("nn.conv3d"),
relay.op.get("nn.conv2d_transpose"),
relay.op.get("nn.dense"),
relay.op.get("nn.batch_matmul"),
),
)
for i, task in enumerate(tasks):
print(f"Task {i} {task.name}: {task}")

with ms.Profiler.timeit("Tuning"):
if ARGS.num_trials > 0:
for i, task in enumerate(tasks):
prefix = "[Task %2d/%2d] " % (i + 1, len(tasks))
tuner_obj = XGBTuner(task, loss_type="rank")
n_trial = min(len(task.config_space), ARGS.num_trials)
tuner_obj.tune(
n_trial=n_trial,
early_stopping=800,
measure_option=measure_option,
callbacks=[
autotvm.callback.progress_bar(n_trial, prefix=prefix),
autotvm.callback.log_to_file(log_file),
],
)
if ARGS.graph_tuner:
junrushao marked this conversation as resolved.
Show resolved Hide resolved
executor = DPTuner(
graph=mod["main"],
input_shapes={input_name: input_shape},
records=log_file,
target_ops=[
relay.op.get("nn.conv2d"),
],
target=ARGS.target,
)
executor.benchmark_layout_transform(min_exec_num=1000)
executor.run()
executor.write_opt_sch2record_file(graph_opt_sch_file)

relay_build = {"graph": relay.build, "vm": relay.vm.compile}[ARGS.backend]
with ms.Profiler.timeit("PostTuningCompilation"):
if ARGS.graph_tuner:
ctx = autotvm.apply_graph_best(graph_opt_sch_file)
else:
ctx = autotvm.apply_history_best(log_file)
with ctx:
print("compile...")
with tvm.transform.PassContext(opt_level=3):
lib = relay_build(mod, target=ARGS.target, params=params)
print("Tuning Time:")
print(profiler.table())

run_module_via_rpc(
rpc_config=ARGS.rpc_config,
lib=lib,
dev_type=ARGS.target.kind.name,
args=input_data,
continuation=create_timer(ARGS.backend),
backend=ARGS.backend,
)


if __name__ == "__main__":
main()