Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule][Test] Migrate check_trace to check_sketch #12764

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 1 addition & 47 deletions python/tvm/meta_schedule/testing/schedule_rule.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,28 +18,15 @@
from typing import List, Union

from tvm.meta_schedule.schedule_rule import (
AutoBind,
AutoInline,
CrossThreadReduction,
MultiLevelTiling,
ParallelizeVectorizeUnroll,
RandomComputeLocation,
MultiLevelTilingTensorCore,
ReuseType,
ScheduleRule,
)
from tvm.meta_schedule.schedule_rule.multi_level_tiling import (
MultiLevelTilingTensorCore,
)
from tvm.target import Target


def auto_bind(target: Target) -> ScheduleRule:
"""Default schedule rules for auto bind"""
if target.kind.name == "cuda":
return AutoBind(max_threadblocks=256, thread_extents=[32, 64, 128, 256, 512, 1024])
raise NotImplementedError(f"{target.kind.name} is not supported")


def auto_inline(target: Target) -> ScheduleRule:
"""Default schedule rules for auto inline"""
if target.kind.name == "llvm":
Expand All @@ -65,13 +52,6 @@ def auto_inline(target: Target) -> ScheduleRule:
raise NotImplementedError(f"{target.kind.name} is not supported")


def cross_thread_reduction(target: Target) -> ScheduleRule:
"""Default schedule rules for with cross-thread reduction"""
if target.kind.name == "cuda":
return CrossThreadReduction(thread_extents=[4, 8, 16, 32, 64, 128, 256, 512])
raise NotImplementedError(f"{target.kind.name} is not supported")


def multi_level_tiling(target: Target) -> ScheduleRule:
"""Default schedule rules for with multi-level tiling and reuse"""
if target.kind.name == "llvm":
Expand Down Expand Up @@ -154,29 +134,3 @@ def multi_level_tiling_tensor_core(
use_software_pipeline=use_software_pipeline,
)
raise NotImplementedError(f"{target.kind.name} is not supported")


def random_compute_location(target: Target) -> ScheduleRule:
"""Default schedule rules for with random-compute-location"""
if target.kind.name == "llvm":
return RandomComputeLocation()
raise NotImplementedError(f"{target.kind.name} is not supported")


def parallel_vectorize_unroll(target: Target) -> ScheduleRule:
"""Default schedule rules for with parallel-vectorize-unroll"""
if target.kind.name == "llvm":
return ParallelizeVectorizeUnroll(
max_jobs_per_core=16,
max_vectorize_extent=32,
unroll_max_steps=[0, 16, 64, 512],
unroll_explicit=True,
)
if target.kind.name == "cuda":
return ParallelizeVectorizeUnroll(
max_jobs_per_core=-1,
max_vectorize_extent=-1,
unroll_max_steps=[0, 16, 64, 512, 1024],
unroll_explicit=True,
)
raise NotImplementedError(f"{target.kind.name} is not supported")
175 changes: 105 additions & 70 deletions tests/python/unittest/test_meta_schedule_schedule_rule_auto_bind.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,10 +15,8 @@
# specific language governing permissions and limitations
# under the License.
# pylint: disable=missing-module-docstring,missing-function-docstring,missing-class-docstring
from tvm.meta_schedule.space_generator.post_order_apply import PostOrderApply
from tvm.meta_schedule.testing.schedule_rule import auto_bind
from tvm.meta_schedule.testing.space_generation import check_trace
from tvm.meta_schedule.tune_context import TuneContext
from tvm import meta_schedule as ms
from tvm.meta_schedule.testing.space_generation import check_sketches
from tvm.script import tir as T
from tvm.target import Target

Expand Down Expand Up @@ -60,83 +58,120 @@ def zero_dim_add(
C[()] = A[()] + B[()]


def _create_context(mod, target, rule) -> TuneContext:
ctx = TuneContext(
mod=mod,
target=target,
space_generator=PostOrderApply(),
sch_rules=[rule],
task_name="test",
)
return ctx


def test_cuda_element_wise():
expected = [
[
'b0 = sch.get_block(name="C", func_name="main")',
"l1, l2 = sch.get_loops(block=b0)",
"l3 = sch.fuse(l1, l2, preserve_unit_iters=True)",
"v4 = sch.sample_categorical(candidates=[32, 64, 128, 256, 512, 1024], probs=[0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666])",
"l5, l6 = sch.split(loop=l3, factors=[None, v4], preserve_unit_iters=True)",
'sch.bind(loop=l5, thread_axis="blockIdx.x")',
'sch.bind(loop=l6, thread_axis="threadIdx.x")',
]
@T.prim_func
def elementwise_0(
A: T.Buffer[(512, 512), "float32"],
B: T.Buffer[(512, 512), "float32"],
) -> None:
# body
# with T.block("root")
for i_j_fused_0 in T.thread_binding(256, thread="blockIdx.x"):
for i_j_fused_1 in T.thread_binding(1024, thread="threadIdx.x"):
with T.block("C"):
vi = T.axis.spatial(512, (i_j_fused_0 * 1024 + i_j_fused_1) // 512)
vj = T.axis.spatial(512, (i_j_fused_0 * 1024 + i_j_fused_1) % 512)
T.reads(A[vi, vj])
T.writes(B[vi, vj])
B[vi, vj] = A[vi, vj] + T.float32(1)

decision_0 = [
("SampleCategorical", 5),
]
target = Target("nvidia/geforce-rtx-3080", host="llvm")
ctx = _create_context(
element_wise,
target=target,
rule=auto_bind(target=target),
mod = element_wise
actual = ms.TuneContext(
mod=mod,
target=Target("nvidia/geforce-rtx-3080", host="llvm"),
space_generator=ms.space_generator.PostOrderApply(),
sch_rules=[
ms.schedule_rule.AutoBind(
max_threadblocks=256,
thread_extents=[32, 64, 128, 256, 512, 1024],
)
],
task_name="test",
).generate_design_space()
check_sketches(
mod,
sketches=actual,
expected_mods=[elementwise_0],
expected_decisions=[decision_0],
)
spaces = ctx.space_generator.generate_design_space(mod=ctx.mod)
assert len(spaces) == 1
check_trace(spaces, expected)


def test_cuda_reduction_loop_only():
expected = [
[
'b0 = sch.get_block(name="C", func_name="main")',
"l1, = sch.get_loops(block=b0)",
"l2 = sch.add_unit_loop(block_or_loop=l1)",
"l3 = sch.fuse(l2, preserve_unit_iters=True)",
"l4, l5 = sch.split(loop=l3, factors=[None, 1], preserve_unit_iters=True)",
'sch.bind(loop=l4, thread_axis="blockIdx.x")',
'sch.bind(loop=l5, thread_axis="threadIdx.x")',
]
]
target = Target("nvidia/geforce-rtx-3080", host="llvm")
ctx = _create_context(
reduction_loop_only,
target=target,
rule=auto_bind(target=target),
@T.prim_func
def reduction_loop_only_0(
A: T.Buffer[2, "float32"],
B: T.Buffer[2, "float32"],
C: T.Buffer[(), "float32"],
) -> None:
for u_fused_0 in T.thread_binding(1, thread="blockIdx.x"):
for u_fused_1 in T.thread_binding(1, thread="threadIdx.x"):
for i0 in T.serial(2):
with T.block("C"):
k0 = T.axis.reduce(2, i0)
T.reads(A[k0], B[k0])
T.writes(C[()])
with T.init():
C[()] = T.float32(1)
C[()] = T.min(C[()], A[k0] / B[k0])

mod = reduction_loop_only
actual = ms.TuneContext(
mod=mod,
target=Target("nvidia/geforce-rtx-3080", host="llvm"),
space_generator=ms.space_generator.PostOrderApply(),
sch_rules=[
ms.schedule_rule.AutoBind(
max_threadblocks=256,
thread_extents=[32, 64, 128, 256, 512, 1024],
)
],
task_name="test",
).generate_design_space()
check_sketches(
mod,
sketches=actual,
expected_mods=[reduction_loop_only_0],
expected_decisions=[[]],
)
spaces = ctx.space_generator.generate_design_space(mod=ctx.mod)
assert len(spaces) == 1
check_trace(spaces, expected)


def test_cuda_zero_dim_add():
expected = [
[
'b0 = sch.get_block(name="C", func_name="main")',
"l1 = sch.add_unit_loop(block_or_loop=b0)",
"l2 = sch.fuse(l1, preserve_unit_iters=True)",
"l3, l4 = sch.split(loop=l2, factors=[None, 1], preserve_unit_iters=True)",
'sch.bind(loop=l3, thread_axis="blockIdx.x")',
'sch.bind(loop=l4, thread_axis="threadIdx.x")',
]
]
target = Target("nvidia/geforce-rtx-3080", host="llvm")
ctx = _create_context(
zero_dim_add,
target=target,
rule=auto_bind(target=target),
@T.prim_func
def zero_dim_add_0(
A: T.Buffer[(), "float32"],
B: T.Buffer[(), "float32"],
C: T.Buffer[(), "float32"],
) -> None:
for u_fused_0 in T.thread_binding(1, thread="blockIdx.x"):
for u_fused_1 in T.thread_binding(1, thread="threadIdx.x"):
with T.block("C"):
vi = T.axis.spatial(1, 0)
T.reads(A[()], B[()])
T.writes(C[()])
C[()] = A[()] + B[()]

mod = zero_dim_add
actual = ms.TuneContext(
mod=mod,
target=Target("nvidia/geforce-rtx-3080", host="llvm"),
space_generator=ms.space_generator.PostOrderApply(),
sch_rules=[
ms.schedule_rule.AutoBind(
max_threadblocks=256,
thread_extents=[32, 64, 128, 256, 512, 1024],
)
],
task_name="test",
).generate_design_space()
check_sketches(
mod,
sketches=actual,
expected_mods=[zero_dim_add_0],
expected_decisions=[[]],
)
spaces = ctx.space_generator.generate_design_space(mod=ctx.mod)
assert len(spaces) == 1
check_trace(spaces, expected)


if __name__ == "__main__":
Expand Down
Loading