Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TIR][Analysis] Implement IdentifyMemCpy analysis function #13947

Merged
merged 9 commits into from
Mar 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions include/tvm/tir/analysis.h
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,15 @@
#include <tvm/tir/op_attr_types.h>
#include <tvm/tir/stmt.h>

#include <optional>
#include <string>

namespace tvm {

namespace arith {
class Analyzer;
}

namespace tir {

/*!
Expand Down Expand Up @@ -203,6 +209,29 @@ TVM_DLL Array<Array<BufferRegion>> GetBlockAccessRegion(const Block& block,
TVM_DLL Array<Array<BufferRegion>> GetBlockReadWriteRegion(const Block& block,
const Map<Var, Buffer>& buffer_var_map);

/*! \brief Helper struct for return value of IdentifyMemCpy
*
* This helper struct is not strictly necessary, as `IdentifyMemCpy`
* could instead return a `std::pair<BufferRegion, BufferRegion>`.
* However, that would introduce ambiguity between the two unnamed
* regions.
*/
struct MemCpyDetails {
BufferRegion source;
BufferRegion dest;
};

/*! \brief Identify whether a For loop is semantically equivalent to MemCpy
*
* \param loop The loop to be checked
*
* \param analyzer The analyzer with which to check any algebraic expressions
*
* \returns The source and destination regions being copied, if the
* loop is equivalent to memcpy. Otherwise, returns nullopt.
*/
TVM_DLL std::optional<MemCpyDetails> IdentifyMemCpy(const For& loop, arith::Analyzer* analyzer);

/*!
* \brief Calculate the expresion complexity based on number of symbols it contains.
* \param expr The expr to be calculated.
Expand Down
316 changes: 316 additions & 0 deletions src/tir/analysis/identify_memcpy.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,316 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file tir/analysis/identify_memcpy.cc
* \brief Check if a loop nest is equivalent to memcpy
*/

#include <tvm/arith/bound.h>
#include <tvm/arith/iter_affine_map.h>
#include <tvm/runtime/container/optional.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/buffer.h>
#include <tvm/tir/stmt.h>

#include <optional>
#include <sstream>
#include <string>
#include <variant>

#include "../../arith/ir_visitor_with_analyzer.h"

namespace tvm {
namespace tir {

std::variant<MemCpyDetails, std::string> IdentifyMemCpyImpl(const For& loop,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's a bit tricky to return the result and error message at the same time. An alternate way is to raise a specific exception and catch from outside.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Agreed, though I think the std::variant avoids most of the usual issues. Rather than returning both the result and the error message at the same time, it returns either the result or the error message, but never both. I didn't want to throw an exception, as I expect the "error" case to be much more common, which is why the public-facing API exposes a std::optional<MemCpyDetails> instead of the internal variant.

arith::Analyzer* analyzer) {
Map<Var, arith::IntSet> loop_intervals;
Map<Var, Range> loop_ranges;
PrimExpr total_loop_iterations = 1;

// Walk through the loop nest, stopping at the first loop whose body
// is not a loop.
Stmt stmt = loop;
while (auto* for_node = stmt.as<ForNode>()) {
loop_ranges.Set(for_node->loop_var, Range::FromMinExtent(for_node->min, for_node->extent));
loop_intervals.Set(for_node->loop_var,
arith::IntSet::FromMinExtent(for_node->min, for_node->extent));
total_loop_iterations = total_loop_iterations * for_node->extent;

stmt = for_node->body;
}

BufferStore store;
if (auto* ptr = stmt.as<BufferStoreNode>()) {
store = GetRef<BufferStore>(ptr);
} else {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Expected innermost loop to have BufferStore body, but instead found " << stmt)
.str();
}

BufferLoad load;
if (auto* ptr = store->value.as<BufferLoadNode>()) {
load = GetRef<BufferLoad>(ptr);
} else {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Expected BufferStore's value to be BufferLoad, but instead found "
<< store->value)
.str();
}

// Now, we have a BufferStore whose value is a BufferLoad. Because
// non-flat physical indices are target-dependent, only handle cases
// where the buffer will be flattened to a 1-d physical buffer.
Array<PrimExpr> flattened_dst = store->buffer.OffsetOf(store->indices);
Array<PrimExpr> flattened_src = load->buffer.OffsetOf(load->indices);

if (flattened_dst.size() != 1 || flattened_src.size() != 1) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Expected flattened dimension of src/dest to be 1, but found"
<< flattened_src.size() << "-d src and " << flattened_dst.size() << "-d dst")
.str();
}
PrimExpr src_index = flattened_src[0];
PrimExpr dst_index = flattened_dst[0];

// First check, do the input/output form affine subsets of their
// respective buffers?
//
// For example, should exclude the following, indices are not affine
//
// for i in T.serial(16):
// B[i] = A[T.abs(i-8)]

auto src_iter_map = arith::DetectIterMap({src_index}, loop_ranges, Bool(true),
arith::IterMapLevel::Bijective, analyzer);
if (src_iter_map->errors.size()) {
return static_cast<const std::stringstream&>(std::stringstream()
<< "arith::DetectIterMap(src) returned "
<< src_iter_map->errors.size() << " errors: ["
<< src_iter_map->errors << "]"
<< " for src_index = " << src_index)
.str();
}
auto dst_iter_map = arith::DetectIterMap({dst_index}, loop_ranges, Bool(true),
arith::IterMapLevel::Bijective, analyzer);
if (dst_iter_map->errors.size()) {
return static_cast<const std::stringstream&>(std::stringstream()
<< "arith::DetectIterMap(dst) returned "
<< dst_iter_map->errors.size() << " errors: ["
<< dst_iter_map->errors << "]"
<< " for dst_index = " << dst_index)
.str();
}

// Second check, are those affine subsets contiguous? If so, then
// the index expressions will visit every location between the min
// and the max. This checks surjectivity over a linear region,
// which may not be the same as DetectIterMap's check of
// surjectivity over the affine subset.
//
// For example, should exclude the following, doesn't touch all
// output locations within the output region touched.
//
// for i in T.serial(16):
// B[2*i] = A[i]
//
// Similarly, should exclude the following, doesn't touch all
// input locations within the input region touched.
//
// for i in T.serial(16):
// B[i] = A[2*i]
total_loop_iterations = analyzer->Simplify(total_loop_iterations);
auto src_interval = analyzer->int_set(src_index, loop_intervals);
auto dst_interval = analyzer->int_set(dst_index, loop_intervals);

if (!src_interval.HasLowerBound() || !src_interval.HasUpperBound()) {
return static_cast<const std::stringstream&>(std::stringstream()
<< "Expected known bounds for src, but found "
<< src_interval << " for expression " << src_index)
.str();
}
if (!dst_interval.HasLowerBound() || !dst_interval.HasUpperBound()) {
return static_cast<const std::stringstream&>(std::stringstream()
<< "Expected known bounds for dst, but found "
<< dst_interval << " for expression " << dst_index)
.str();
}

{
PrimExpr must_prove = total_loop_iterations == src_interval.max() - src_interval.min() + 1;
PrimExpr simplified = analyzer->Simplify(must_prove);
if (!analyzer->CanProve(simplified)) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Mismatch between loop iterations (" << total_loop_iterations
<< ") and number of src indices touched (" << src_interval
<< ". Equality to prove simplified to " << simplified)
.str();
}
}
{
PrimExpr must_prove = total_loop_iterations == dst_interval.max() - dst_interval.min() + 1;
PrimExpr simplified = analyzer->Simplify(must_prove);
if (!analyzer->CanProve(simplified)) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Mismatch between loop iterations (" << total_loop_iterations
<< ") and number of dst indices touched (" << dst_interval
<< ". Equality to prove simplified to " << simplified)
.str();
}
}

// Third check, is there a transformation applied between the input
// and output iterators?
//
// For example, the following would pass all checks so far, but
// converts between row-major and column-major layouts, and could
// not be specified as a memcpy.
//
// for i,j in T.grid(4,4):
// B[i,j] = A[j,i]

auto src_iter_sum = src_iter_map->indices[0];
auto dst_iter_sum = dst_iter_map->indices[0];

if (src_iter_sum->args.size() != dst_iter_sum->args.size()) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "IterMap for src/dst unpacked to different number of IterSplitExpr: "
<< src_iter_sum->args.size() << " for src, " << dst_iter_sum->args.size()
<< " for dst. "
<< "IterMaps were detected as src = " << src_iter_sum << ", dst = " << dst_iter_sum)
.str();
}
std::vector<arith::IterSplitExpr> src_iter_terms(src_iter_sum->args.begin(),
src_iter_sum->args.end());
std::vector<arith::IterSplitExpr> dst_iter_terms(dst_iter_sum->args.begin(),
dst_iter_sum->args.end());

auto make_comparison_tuple = [](const arith::IterSplitExpr& expr) {
auto as_int_or_zero = [](auto& val) -> int64_t {
if (auto* as_int = val.template as<IntImmNode>()) {
return as_int->value;
} else {
return 0;
}
};
return std::tuple{
static_cast<bool>(expr->scale.as<IntImmNode>()), as_int_or_zero(expr->scale),
static_cast<bool>(expr->extent.as<IntImmNode>()), as_int_or_zero(expr->lower_factor),
static_cast<bool>(expr->lower_factor.as<IntImmNode>()), as_int_or_zero(expr->lower_factor),
};
};
auto sorting_function = [&make_comparison_tuple](const arith::IterSplitExpr& lhs,
const arith::IterSplitExpr& rhs) -> bool {
return make_comparison_tuple(lhs) < make_comparison_tuple(rhs);
};
std::sort(src_iter_terms.begin(), src_iter_terms.end(), sorting_function);
std::sort(dst_iter_terms.begin(), dst_iter_terms.end(), sorting_function);

for (size_t i = 0; i < src_iter_terms.size(); i++) {
const arith::IterSplitExpr& src_term = src_iter_terms[i];
const arith::IterSplitExpr& dst_term = dst_iter_terms[i];

if (!analyzer->CanProve(
arith::NormalizeIterMapToExpr(src_term->source->source == dst_term->source->source))) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Term " << i << " had different source, src_term->source = " << src_term->source
<< ", dst_term->source = " << dst_term->source)
.str();
}
if (!analyzer->CanProve(src_term->lower_factor == dst_term->lower_factor)) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Term " << i << " had different lower_factor, src_term->lower_factor = "
<< src_term->lower_factor
<< ", dst_term->lower_factor = " << dst_term->lower_factor)
.str();
}
if (!analyzer->CanProve(src_term->extent == dst_term->extent)) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Term " << i << " had different extent, src_term->extent = " << src_term->extent
<< ", dst_term->extent = " << dst_term->extent)
.str();
}
if (!analyzer->CanProve(src_term->scale == dst_term->scale)) {
return static_cast<const std::stringstream&>(
std::stringstream()
<< "Term " << i << " had different scale, src_term->scale = " << src_term->scale
<< ", dst_term->scale = " << dst_term->scale)
.str();
}
}

BufferRegion src_region(load->buffer, arith::DomainTouched(loop, load->buffer, true, true));
BufferRegion dst_region(store->buffer, arith::DomainTouched(loop, store->buffer, true, true));

return MemCpyDetails{src_region, dst_region};
}

std::optional<MemCpyDetails> IdentifyMemCpy(const For& loop, arith::Analyzer* analyzer) {
auto result = IdentifyMemCpyImpl(loop, analyzer);
if (auto* ptr = std::get_if<MemCpyDetails>(&result)) {
return *ptr;
} else {
return std::nullopt;
}
}

// Expose the IdentifyMemCpy functionality to Python API for purpose of unit testing.
TVM_REGISTER_GLOBAL("tir.analysis._identify_memcpy").set_body_typed([](const Stmt& stmt) {
Array<ObjectRef> output;

struct Visitor : arith::IRVisitorWithAnalyzer {
explicit Visitor(Array<ObjectRef>* output) : output(output) {}
Array<ObjectRef>* output;

private:
using IRVisitorWithAnalyzer::VisitStmt_;
void VisitStmt_(const ForNode* op) override {
For loop = GetRef<For>(op);
auto result = IdentifyMemCpyImpl(loop, &analyzer_);
if (auto* ptr = std::get_if<MemCpyDetails>(&result)) {
output->push_back(Array{ptr->source, ptr->dest});
} else if (auto* ptr = std::get_if<std::string>(&result)) {
output->push_back(StringImm(*ptr));
} else {
LOG(FATAL) << "Internal error, unhandled std::variant type";
}

IRVisitorWithAnalyzer::VisitStmt_(op);
}
};

Visitor visitor(&output);
visitor(stmt);

return output;
});

} // namespace tir
} // namespace tvm
Loading