Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Exec] Add a script to test GPU memory bandwidth #15287

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
192 changes: 192 additions & 0 deletions python/tvm/exec/gpu_memory_bandwidth.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""A script to measure GPU memory bandwidth"""
import argparse
import itertools

import numpy as np

import tvm
from tvm import te, tir
from tvm.meta_schedule.runner import EvaluatorConfig
from tvm.testing import local_run


def _parse_args() -> argparse.Namespace:
def _parse_list_int(source: str):
return [int(i) for i in source.split(",")]

parser = argparse.ArgumentParser(
prog="GPU memory bandwidth testing",
description="""Example:
python -m tvm.exec.gpu_memory_bandwidth "nvidia/geforce-rtx-3090-ti" \
--dtype "float32"
--bx "8,16,32,64,128,256" \
--tx "32,64,128,256,512,1024" \
--vec "1,2,4"
""",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"target",
type=str,
help="The target to be benchmarked",
)
parser.add_argument(
"--xo",
type=int,
default=1024,
help="The value of `XO` in [XO, K, XI] => [XO, XI] reduction",
)
parser.add_argument(
"--k",
type=int,
default=64,
help="The value of `K` in [XO, K, XI] => [XO, XI] reduction",
)
parser.add_argument(
"--xi",
type=int,
default=4096,
help="The value of `XI` in [XO, K, XI] -> [XO, XI] reduction",
)
parser.add_argument(
"--dtype",
type=str,
default="float32",
help="The data type to be used in the workload",
)
parser.add_argument(
"--bx",
type=_parse_list_int,
default=[8, 16, 32, 64, 128, 256],
help="The value to be used to split `XO` into [BX, _]",
)
parser.add_argument(
"--tx",
type=_parse_list_int,
default=[32, 64, 128, 256, 512, 1024],
help="Number of threads to be used",
)
parser.add_argument(
"--vec",
type=_parse_list_int,
default=[1, 2, 4],
help="Vector length to be used in vectorized load",
)
return parser.parse_args()


def _workload(
len_xo: int,
len_k: int,
len_xi: int,
dtype: str,
):
# pylint: disable=invalid-name
A = te.placeholder((len_xo, len_k, len_xi), dtype=dtype, name="A")
k = te.reduce_axis((0, len_k), "k")
B = te.compute(
(len_xo, len_xi),
lambda i, j: te.sum(A[i, k, j], axis=k),
name="B",
)
# pylint: enable=invalid-name
return te.create_prim_func([A, B])


def _schedule(
sch: tir.Schedule,
len_bx: int,
len_tx: int,
len_vec: int,
):
# pylint: disable=invalid-name
block = sch.get_block("B")
xo, xi, k = sch.get_loops(block)
bx, xo = sch.split(xo, factors=[len_bx, None])
xi, tx, vec = sch.split(xi, factors=[None, len_tx, len_vec])
sch.reorder(bx, xi, tx, xo, k, vec)
bx = sch.fuse(bx, xi)
sch.bind(bx, "blockIdx.x")
sch.bind(tx, "threadIdx.x")
ldg = sch.cache_read(block, 0, "local")
sch.compute_at(ldg, k, preserve_unit_loops=True)
sch.vectorize(sch.get_loops(ldg)[-1])
sch.decompose_reduction(block, k)
# pylint: enable=invalid-name


def main(): # pylint: disable=too-many-locals
"""Entry point"""
args = _parse_args()
# pylint: disable=invalid-name
target = tvm.target.Target(args.target)
dtype = args.dtype

a = np.random.uniform(-1, 1, (args.xo, args.k, args.xi)).astype(dtype)
b = np.zeros((args.xo, args.xi), dtype=dtype)
num_bytes = a.size * a.itemsize + b.size * b.itemsize
print("###### Bandwidth Test ######")
print(
f"Workload [XO, K, XI] => [XO, XI]. "
f"[{args.xo}, {args.k}, {args.xi}] => [{args.xo}, {args.xi}]"
)
print(f"Input size: {num_bytes / 1048576} MB")
print(f"Target: {target}")

# pylint: enable=invalid-name
best_bandwidth = -1
for len_bx, len_tx, len_vec in itertools.product(
args.bx,
args.tx,
args.vec,
):
func = _workload(
len_xo=args.xo,
len_k=args.k,
len_xi=args.xi,
dtype=dtype,
)
sch = tir.Schedule(func)
_schedule(sch, len_bx, len_tx, len_vec)

_, profile_result = local_run(
tvm.build(sch.mod, target=target),
target.kind.name,
[a, b],
evaluator_config=EvaluatorConfig(
number=10,
repeat=1,
min_repeat_ms=100,
enable_cpu_cache_flush=False,
),
)
bandwidth = num_bytes / profile_result.mean / (1024**3)
bx = len_bx * args.xi // (len_tx * len_vec) # pylint: disable=invalid-name
mbs = num_bytes / 1024 / 1024
print(
f"bandwidth = {bandwidth:.3f} GB/s, bx = {bx}, tx = {len_tx}, "
f"len_vec = {len_vec}, bytes = {mbs} MB"
)
if bandwidth > best_bandwidth:
best_bandwidth = bandwidth
print(f"peak bandwidth: {best_bandwidth:.3f} GB/s")


if __name__ == "__main__":
main()