Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[UnitTest][Metal] Parametrize allreduce GPU tests #15749

Merged
merged 2 commits into from
Sep 15, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 57 additions & 52 deletions tests/python/unittest/test_allreduce_cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,61 +46,66 @@ def reduce_max(a: T.handle, b: T.handle, d1: T.int32, d2: T.int32, d3: T.int32)
B[vi, vj, vk] = T.max(B[vi, vj, vk], A[vi, vj, vk, vl])


@tvm.testing.requires_gpu
@tvm.testing.requires_cuda
def test_allreduce_cuda():
def check_sum(d1: int, d2: int, d3: int):
_, _, _d1, _d2, _d3 = reduce.params
mod = reduce.specialize({_d1: d1, _d2: d2, _d3: d3})
sch = tvm.tir.Schedule(mod)
blk = sch.get_block("reduce")
i, j, k, l = sch.get_loops(blk)
sch.bind(i, "blockIdx.x")
sch.bind(j, "threadIdx.z")
sch.bind(k, "threadIdx.y")
sch.bind(l, "threadIdx.x")
f = tvm.build(sch.mod["main"], target="cuda")

# prepare input and output array
a_np = np.random.rand(1, d1, d2, d3).astype("float32")
b_np = a_np.sum(axis=-1).astype("float32")
a = tvm.nd.array(a_np, tvm.cuda(0))
b = tvm.nd.array(np.zeros_like(b_np), tvm.cuda(0))

# launch kernel
f(a, b)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-6, atol=1e-6)

def check_max(d1: int, d2: int, d3: int):
_, _, _d1, _d2, _d3 = reduce_max.params
mod = reduce_max.specialize({_d1: d1, _d2: d2, _d3: d3})
sch = tvm.tir.Schedule(mod)
blk = sch.get_block("reduce")
i, j, k, l = sch.get_loops(blk)
sch.bind(i, "blockIdx.x")
sch.bind(j, "threadIdx.z")
sch.bind(k, "threadIdx.y")
sch.bind(l, "threadIdx.x")
f = tvm.build(sch.mod["main"], target="cuda")

# prepare input and output array
a_np = -np.random.rand(1, d1, d2, d3).astype("float32")
b_np = a_np.max(axis=-1).astype("float32")
a = tvm.nd.array(a_np, tvm.cuda(0))
b = tvm.nd.array(np.zeros_like(b_np), tvm.cuda(0))

# launch kernel
f(a, b)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-6, atol=1e-6)

def generate_param_sets():
for d1 in range(1, 5):
for d2 in range(1, 5):
for d3 in [2, 4, 8, 12, 16, 32, 48, 64, 100, 128, 201, 256, 512, 1024]:
if d1 * d2 * d3 > 1024:
continue
check_sum(d1, d2, d3)
check_max(d1, d2, d3)
if d1 * d2 * d3 < 1024:
yield (d1, d2, d3)


dims = tvm.testing.parameter(*generate_param_sets())


@tvm.testing.parametrize_targets("cuda", "metal")
def test_allreduce_cuda_sum(target, dims):
d1, d2, d3 = dims
_, _, _d1, _d2, _d3 = reduce.params
mod = reduce.specialize({_d1: d1, _d2: d2, _d3: d3})
sch = tvm.tir.Schedule(mod)
blk = sch.get_block("reduce")
i, j, k, l = sch.get_loops(blk)
sch.bind(i, "blockIdx.x")
sch.bind(j, "threadIdx.z")
sch.bind(k, "threadIdx.y")
sch.bind(l, "threadIdx.x")
f = tvm.build(sch.mod["main"], target=target)

# prepare input and output array
a_np = np.random.rand(1, d1, d2, d3).astype("float32")
b_np = a_np.sum(axis=-1).astype("float32")
a = tvm.nd.array(a_np, tvm.cuda(0))
b = tvm.nd.array(np.zeros_like(b_np), tvm.cuda(0))

# launch kernel
f(a, b)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-6, atol=1e-6)


@tvm.testing.parametrize_targets("cuda", "metal")
def test_allreduce_cuda_max(target, dims):
d1, d2, d3 = dims
_, _, _d1, _d2, _d3 = reduce_max.params
mod = reduce_max.specialize({_d1: d1, _d2: d2, _d3: d3})
sch = tvm.tir.Schedule(mod)
blk = sch.get_block("reduce")
i, j, k, l = sch.get_loops(blk)
sch.bind(i, "blockIdx.x")
sch.bind(j, "threadIdx.z")
sch.bind(k, "threadIdx.y")
sch.bind(l, "threadIdx.x")
f = tvm.build(sch.mod["main"], target=target)

# prepare input and output array
a_np = -np.random.rand(1, d1, d2, d3).astype("float32")
b_np = a_np.max(axis=-1).astype("float32")
a = tvm.nd.array(a_np, tvm.cuda(0))
b = tvm.nd.array(np.zeros_like(b_np), tvm.cuda(0))

# launch kernel
f(a, b)
tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-6, atol=1e-6)


if __name__ == "__main__":
test_allreduce_cuda()
tvm.testing.main()