Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NVSHMEM] Enable nvshmem memory allocation #17415

Merged
merged 1 commit into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,8 @@ void InitNVSHMEM(ShapeTuple uid_64, int num_workers) {
}
nvshmemx_set_attr_uniqueid_args(worker->worker_id, num_workers, &uid, &attr);
nvshmemx_init_attr(NVSHMEMX_INIT_WITH_UNIQUEID, &attr);
int mype_node = nvshmem_team_my_pe(NVSHMEMX_TEAM_NODE);
CUDA_CALL(cudaSetDevice(mype_node));
LOG_INFO << "NVSHMEM init finished: mype=" << nvshmem_my_pe() << " "
<< ", npes=" << nvshmem_n_pes();
}
Expand Down
104 changes: 104 additions & 0 deletions src/runtime/contrib/nvshmem/memory_allocator.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <nvshmem.h>
#include <nvshmemx.h>
#include <tvm/runtime/memory/memory_manager.h>
#include <tvm/runtime/packed_func.h>
#include <tvm/runtime/registry.h>

#include <thread>

#include "../../cuda/cuda_common.h"
#include "../../memory/pooled_allocator.h"

namespace tvm {
namespace runtime {

using tvm::runtime::memory::Buffer;
using tvm::runtime::memory::PooledAllocator;

/*!
* \brief The memory allocator of NVSHMEM.
* Overriding PooledAllocator for efficient memory management.
*/
class NVSHMEMAllocator final : public PooledAllocator {
public:
explicit NVSHMEMAllocator() : PooledAllocator() {}

~NVSHMEMAllocator() { PooledAllocator::ReleaseAll(); }

void Clear() final { PooledAllocator::ReleaseAll(); }

bool AllowMemoryScope(const std::string& mem_scope) const final {
// The allowed memory scope of NVSHMEM is "nvshmem";
return mem_scope == "nvshmem";
}

/*! \brief Return the global NVSHMEM singleton allocator. */
static NVSHMEMAllocator* Global() {
static NVSHMEMAllocator* allocator = new NVSHMEMAllocator();
return allocator;
}

NDArray Empty(ShapeTuple shape, DataType dtype, Device device) {
NDArray::Container* container = new NDArray::Container(nullptr, shape, dtype, device);
container->SetDeleter([](Object* obj) {
auto* ptr = static_cast<NDArray::Container*>(obj);
ICHECK(ptr->manager_ctx != nullptr);
Buffer* buffer = reinterpret_cast<Buffer*>(ptr->manager_ctx);
NVSHMEMAllocator::Global()->Free(*(buffer));
delete buffer;
delete ptr;
});
Buffer* buffer = new Buffer;
*buffer = PooledAllocator::Alloc(device, shape, dtype, String("nvshmem"));
container->manager_ctx = reinterpret_cast<void*>(buffer);
container->dl_tensor.data = buffer->data;
return NDArray(GetObjectPtr<Object>(container));
}

private:
void* DeviceAllocDataSpace(Device dev, size_t size, size_t alignment,
DLDataType type_hint) final {
ICHECK_EQ(dev.device_type, DLDeviceType::kDLCUDA)
<< "nvshmem can only allocate cuda device memory space.";
ICHECK(type_hint.code == DLDataTypeCode::kDLInt || type_hint.code == DLDataTypeCode::kDLUInt ||
type_hint.code == DLDataTypeCode::kDLFloat)
<< "nvshmem can only allocate tensor with int, usingned int or float data types.";
return nvshmem_align(alignment, size);
}

void DeviceFreeDataSpace(Device dev, void* ptr) final { nvshmem_free(ptr); }
};

NDArray NVSHMEMEmpty(ShapeTuple shape, DataType dtype, Device device) {
return NVSHMEMAllocator::Global()->Empty(shape, dtype, device);
}

TVM_REGISTER_GLOBAL("runtime.disco.nvshmem.empty").set_body_typed(NVSHMEMEmpty);

void NVSHMEMFinalize() {
NVSHMEMAllocator::Global()->Clear();
nvshmem_finalize();
}

TVM_REGISTER_GLOBAL("runtime.disco.nvshmem.finalize_nvshmem").set_body_typed(NVSHMEMFinalize);

} // namespace runtime
} // namespace tvm
45 changes: 39 additions & 6 deletions tests/python/disco/test_nvshmem.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,9 @@
import subprocess
import threading
import sys
from multiprocessing import Process
from typing import Any, Callable, List


import tvm
import tvm.testing
Expand Down Expand Up @@ -82,8 +85,6 @@ def start_server():
thread.join()

def __del__(self):
for node in self.remote_nodes:
node.kill()
if self.sess is not None:
self.sess.shutdown()
del self.sess
Expand All @@ -98,17 +99,49 @@ def create_socket_session(num_workers):
return _SOCKET_SESSION_TESTER.sess


@pytest.mark.parametrize("num_workers", [2, 4])
def test_nvshmem_init(num_workers):
def test_nvshmem_init_finalize(session_kind: di.Session, num_workers: int):
if tvm.get_global_func("runtime.disco.nvshmem.init_nvshmem_uid", True) is None:
return
sess = create_socket_session(num_workers=num_workers)

sess = session_kind(num_workers=num_workers)
f_init_nvshmem_uid = tvm.get_global_func("runtime.disco.nvshmem.init_nvshmem_uid")
uid = f_init_nvshmem_uid()
init_dfunc = sess.get_global_func("runtime.disco.nvshmem.init_nvshmem")
init_dfunc(uid, num_workers)
sess.sync_worker_0()
finalize_dfunc = sess.get_global_func("runtime.disco.nvshmem.finalize_nvshmem")
finalize_dfunc()
sess.sync_worker_0()


def test_nvshmem_empty(session_kind: di.Session, num_workers: int):
if tvm.get_global_func("runtime.disco.nvshmem.init_nvshmem_uid", True) is None:
return

device = tvm.cuda()
sess = session_kind(num_workers=num_workers)
f_init_nvshmem_uid = tvm.get_global_func("runtime.disco.nvshmem.init_nvshmem_uid")
uid = f_init_nvshmem_uid()
init_dfunc = sess.get_global_func("runtime.disco.nvshmem.init_nvshmem")
init_dfunc(uid, num_workers)
sess.sync_worker_0()
empty_dfunc = sess.get_global_func("runtime.disco.nvshmem.empty")
a = empty_dfunc(ShapeTuple((32, 64)), "float32", device)
b = empty_dfunc(ShapeTuple((64, 32)), "float32", device)
sess.sync_worker_0()
finalize_dfunc = sess.get_global_func("runtime.disco.nvshmem.finalize_nvshmem")
finalize_dfunc()
sess.sync_worker_0()


if __name__ == "__main__":
tvm.testing.main()
# After the first call to `nvshmem_init`, a subsequent call to `nvshmem_init`
# or `nvshmem_init_thread` in the same program results in undefined behavior.
# So we always create a new process to run the test. Then no repeated nvshmem
# init happens in the same process, since the worker0 may share the same process.
for session_kind in [create_socket_session, di.ProcessSession]:
for num_workers in [2, 4]:
for test_func in [test_nvshmem_init_finalize, test_nvshmem_empty]:
p = Process(target=test_func, args=[session_kind, num_workers])
p.start()
p.join()
Loading