Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 21 additions & 2 deletions src/relax/transform/split_layout_rewrite_preproc.cc
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,16 @@ class SplitPrimFuncLayoutRewrite : public StmtMutator {
Block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
/*name_hint=*/"root", body));

PrimFunc func = PrimFunc(params, body, VoidType(), buffer_map);
Map<String, ObjectRef> dict;
for (const auto& [key, original_value] : original_func_->attrs->dict) {
if (key == "global_symbol") {
dict.Set(key, Downcast<String>(original_value) + "_weight_prepack");
} else if (key != "layout_free_buffers") {
dict.Set(key, original_value);
}
}
DictAttrs attrs(dict);
PrimFunc func = PrimFunc(params, body, VoidType(), buffer_map, attrs);

return RenewDefs(func);
}
Expand Down Expand Up @@ -118,7 +127,17 @@ class SplitPrimFuncLayoutRewrite : public StmtMutator {
/*init=*/NullOpt,
/*alloc_buffers=*/alloc_buffers));

PrimFunc func = PrimFunc(original_func_->params, body, VoidType(), buffer_map);
Map<String, ObjectRef> dict;
for (const auto& [key, original_value] : original_func_->attrs->dict) {
if (key == "global_symbol") {
dict.Set(key, Downcast<String>(original_value) + "_prepacked");
} else if (key != "layout_free_buffers") {
dict.Set(key, original_value);
}
}
DictAttrs attrs(dict);
PrimFunc func = PrimFunc(original_func_->params, body, VoidType(), buffer_map, attrs);

return RenewDefs(func);
}

Expand Down
84 changes: 84 additions & 0 deletions tests/python/relax/test_transform_split_layout_rewrite_preproc.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,5 +216,89 @@ def forward(
tvm.ir.assert_structural_equal(mod, After)


def test_attr_inheritance():
@I.ir_module
class Before:
@T.prim_func(private=True)
def tir_func(
X: T.Buffer((224, 224), "float32"),
W: T.Buffer((224, 224), "float32"),
Out: T.Buffer((224, 224), "float32"),
):
T.func_attr({"layout_free_buffers": [1], "tir.noalias": T.bool(True)})
W_rewrite = T.alloc_buffer((4, 4, 56, 56))
for i, j in T.grid(224, 224):
with T.block("W_rewrite"):
vi, vj = T.axis.remap("SS", [i, j])
T.block_attr({"meta_schedule.layout_rewrite_preproc": T.bool(True)})
W_rewrite[vi // 56, vj // 56, vi % 56, vj % 56] = W[vi, vj]
for i0, j0, i1, j1 in T.grid(4, 4, 56, 56):
with T.block("Out"):
vi = T.axis.spatial(224, i0 * 56 + i1)
vj = T.axis.spatial(224, j0 * 56 + j1)
Out[vi, vj] = X[vi, vj] + W_rewrite[vi // 56, vj // 56, vi % 56, vj % 56]

@R.function
def forward(
x: R.Tensor((224, 224), dtype="float32"),
w: R.Tensor((224, 224), dtype="float32"),
) -> R.Tensor((224, 224), dtype="float32"):
R.func_attr({"num_input": 1})
cls = Before
with R.dataflow():
gv = R.call_tir(
cls.tir_func, (x, w), out_sinfo=R.Tensor((224, 224), dtype="float32")
)
R.output(gv)
return gv

@I.ir_module
class After:
@T.prim_func(private=True)
def tir_func_prepacked(
X: T.Buffer((224, 224), "float32"),
W_rewrite: T.Buffer((4, 4, 56, 56), "float32"),
Out: T.Buffer((224, 224), "float32"),
):
T.func_attr({"tir.noalias": T.bool(True)})
for i0, j0, i1, j1 in T.grid(4, 4, 56, 56):
with T.block("Out"):
vi = T.axis.spatial(224, i0 * 56 + i1)
vj = T.axis.spatial(224, j0 * 56 + j1)
Out[vi, vj] = X[vi, vj] + W_rewrite[vi // 56, vj // 56, vi % 56, vj % 56]

@T.prim_func(private=True)
def tir_func_weight_prepack(
W: T.Buffer((224, 224), "float32"),
W_rewrite: T.Buffer((4, 4, 56, 56), "float32"),
):
T.func_attr({"tir.noalias": T.bool(True)})
for i, j in T.grid(224, 224):
with T.block("W_rewrite"):
vi, vj = T.axis.remap("SS", [i, j])
W_rewrite[vi // 56, vj // 56, vi % 56, vj % 56] = W[vi, vj]

@R.function
def forward(
x: R.Tensor((224, 224), dtype="float32"),
w: R.Tensor((224, 224), dtype="float32"),
) -> R.Tensor((224, 224), dtype="float32"):
R.func_attr({"num_input": 1})
cls = After
with R.dataflow():
lv = R.call_tir(
cls.tir_func_weight_prepack, (w,), out_sinfo=R.Tensor((4, 4, 56, 56), "float32")
)
lv1 = R.call_tir(
cls.tir_func_prepacked, (x, lv), out_sinfo=R.Tensor((224, 224), "float32")
)
gv: R.Tensor((224, 224), dtype="float32") = lv1
R.output(gv)
return gv

mod = relax.transform.SplitLayoutRewritePreproc()(Before)
tvm.ir.assert_structural_equal(mod, After)


if __name__ == "__main__":
tvm.testing.main()