Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions python/tvm/relax/frontend/torch/exported_program_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,6 +174,23 @@ def _slice(self, node: fx.Node) -> relax.Var:
stride = [node.args[4] if len(node.args) > 4 else 1]
return self.block_builder.emit(relax.op.strided_slice(x, axes, begin, end, stride))

########## Creation ##########

def _one_hot(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
num_classes = node.args[1] if len(node.args) > 1 else node.kwargs.get("num_classes")
if num_classes is None:
raise ValueError("num_classes not found in node.args or node.kwargs")

on_value = node.args[2] if len(node.args) > 2 else node.kwargs.get("on_value", 1)
off_value = node.args[3] if len(node.args) > 3 else node.kwargs.get("off_value", 0)
axis = node.args[4] if len(node.args) > 4 else node.kwargs.get("axis", -1)

on_value = relax.PrimValue(on_value)
off_value = relax.PrimValue(off_value)

return self.block_builder.emit(relax.op.one_hot(x, on_value, off_value, num_classes, axis))

########## Others ##########

def create_convert_map(
Expand Down Expand Up @@ -331,8 +348,10 @@ def create_convert_map(
"contiguous.default": lambda node: self.env[node.args[0]], # no-op
"clone.default": lambda node: self.env[node.args[0]],
"empty.memory_format": self._empty,
"empty_like.default": self._empty_like,
"fill.Scalar": self._fill,
"new_ones.default": self._new_ones,
"one_hot.default": self._one_hot,
# other
"getitem": self._getitem,
}
Expand Down
68 changes: 68 additions & 0 deletions tests/python/relax/test_frontend_from_exported_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -3425,6 +3425,74 @@ def main(
tvm.ir.assert_structural_equal(mod, Expected)


def test_empty_like():
class EmptyLike(Module):
def forward(self, data):
return torch.empty_like(data)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5,), dtype="float32"),
) -> R.Tuple(R.Tensor((5,), dtype="float32")):
with R.dataflow():
lv: R.Tensor((5,), dtype="float32") = R.zeros_like(inp_0, dtype="void")
gv: R.Tuple(R.Tensor((5,), dtype="float32")) = (lv,)
R.output(gv)
return gv

example_args = (torch.randn(5, dtype=torch.float32),)

verify_model(EmptyLike(), example_args, {}, Expected)


def test_one_hot():
class OneHot(Module):
def forward(self, indices):
return torch.nn.functional.one_hot(indices, num_classes=10)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5,), dtype="int64"),
) -> R.Tuple(R.Tensor((5, 10), dtype="int64")):
with R.dataflow():
lv: R.Tensor((5, 10), dtype="int64") = R.one_hot(
inp_0, R.prim_value(1), R.prim_value(0), depth=10, axis=-1
)
gv: R.Tuple(R.Tensor((5, 10), dtype="int64")) = (lv,)
R.output(gv)
return gv

example_args = (torch.randint(0, 10, (5,), dtype=torch.int64),)

verify_model(OneHot(), example_args, {}, Expected)


def test_select():
class Select(Module):
def forward(self, input):
return torch.select(input, 0, 1)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((2, 3), dtype="float32"),
) -> R.Tuple(R.Tensor((3,), dtype="float32")):
with R.dataflow():
lv: R.Tensor((3,), dtype="float32") = R.take(inp_0, R.const(1, "int64"), axis=0)
gv: R.Tuple(R.Tensor((3,), dtype="float32")) = (lv,)
R.output(gv)
return gv

example_args = (torch.randn(2, 3, dtype=torch.float32),)

verify_model(Select(), example_args, {}, Expected)


def test_gather():
class Gather0(Module):
def forward(self, data, indices):
Expand Down