Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
# pylint: disable=import-outside-toplevel
"""Base class for PyTorch FX Graph importer."""
import abc
from functools import reduce
import math
from typing import Callable, Dict, Optional, Tuple, Union

Expand Down Expand Up @@ -1018,6 +1019,24 @@ def _expand_as(self, node: fx.Node) -> relax.Var:
other_shape = self.shape_of(args[1]) # the shape of 'other'
return self.block_builder.emit(relax.op.broadcast_to(data, other_shape))

def _flatten_impl(self, x, start_dim, end_dim) -> relax.Var:
shape = self.shape_of(x)
start_dim = start_dim if start_dim >= 0 else len(shape) + start_dim
end_dim = end_dim if end_dim >= 0 else len(shape) + end_dim
flattened = reduce(lambda x, y: x * y, [shape[i] for i in range(start_dim, end_dim + 1)])
new_shape = (
[shape[i] for i in range(0, start_dim)]
+ [flattened]
+ [shape[i] for i in range(end_dim + 1, len(shape))]
)
return self.block_builder.emit(relax.op.reshape(x, new_shape))

def _flatten(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
start_dim = node.args[1] if len(node.args) >= 2 else node.kwargs.get("start_dim", 0)
end_dim = node.args[2] if len(node.args) == 3 else node.kwargs.get("end_dim", -1)
return self._flatten_impl(x, start_dim, end_dim)

def _flip(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dims = node.args[1] if len(node.args) > 1 else node.kwargs.get("dims", None)
Expand Down Expand Up @@ -1233,6 +1252,21 @@ def _new_ones(self, node: fx.Node) -> relax.Var:
)
)

########## DataType ##########

def _to(self, node: fx.Node) -> relax.Var:
import torch

x = self.env[node.args[0]]
if len(node.args) == 2:
if isinstance(node.args[1], torch.dtype):
dtype = BaseFXGraphImporter._convert_data_type(node.args[1], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))
elif "dtype" in node.kwargs:
dtype = BaseFXGraphImporter._convert_data_type(node.kwargs["dtype"], self.env)
return self.block_builder.emit(relax.op.astype(x, dtype))
return x

########## Others ##########

def _getitem(self, node: fx.Node) -> relax.Var:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -377,6 +377,7 @@ def create_convert_map(
"cumprod.default": self._cumprod,
"expand.default": self._expand,
"expand_as.default": self._expand_as,
"flatten.using_ints": self._flatten,
"flip.default": self._flip,
"gather.default": self._gather,
"permute.default": self._permute,
Expand Down Expand Up @@ -411,6 +412,9 @@ def create_convert_map(
"lift_fresh_copy.default": self._to_copy,
"new_ones.default": self._new_ones,
"one_hot.default": self._one_hot,
# datatype
"to.dtype": self._to,
"to.dtype_layout": self._to,
# other
"getitem": self._getitem,
}
Expand Down
18 changes: 0 additions & 18 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -415,24 +415,6 @@ def _chunk(self, node: fx.Node) -> relax.Var:
dim = node.args[2] if len(node.args) > 2 else node.kwargs.get("dim", 0)
return self.block_builder.emit(relax.op.split(x, chunks, dim))

def _flatten_impl(self, x, start_dim, end_dim) -> relax.Var:
shape = self.shape_of(x)
start_dim = start_dim if start_dim >= 0 else len(shape) + start_dim
end_dim = end_dim if end_dim >= 0 else len(shape) + end_dim
flattened = reduce(lambda x, y: x * y, [shape[i] for i in range(start_dim, end_dim + 1)])
new_shape = (
[shape[i] for i in range(0, start_dim)]
+ [flattened]
+ [shape[i] for i in range(end_dim + 1, len(shape))]
)
return self.block_builder.emit(relax.op.reshape(x, new_shape))

def _flatten(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
start_dim = node.args[1] if len(node.args) >= 2 else node.kwargs.get("start_dim", 0)
end_dim = node.args[2] if len(node.args) == 3 else node.kwargs.get("end_dim", -1)
return self._flatten_impl(x, start_dim, end_dim)

def _flatten_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
Expand Down
19 changes: 2 additions & 17 deletions tests/python/relax/test_frontend_from_exported_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -1021,10 +1021,6 @@ def main(
verify_model(Min1(), example_args1, {}, expected_min1)


@pytest.mark.skipif(
version.parse(torch_version) >= version.parse("2.6.0"),
reason="Tests not compatible with PyTorch >= 2.6",
)
def test_batchnorm2d():
class BatchNorm2d(Module):
def __init__(self):
Expand Down Expand Up @@ -2702,10 +2698,6 @@ def main(
verify_model(Expand2(), example_args, {}, expected1)


@pytest.mark.skipif(
version.parse(torch_version) >= version.parse("2.6.0"),
reason="Tests not compatible with PyTorch >= 2.6",
)
def test_flatten():
class Flatten(Module):
def __init__(self):
Expand Down Expand Up @@ -2907,10 +2899,6 @@ def main(
verify_model(Slice2(), example_args, {}, expected2)


@pytest.mark.skipif(
version.parse(torch_version) >= version.parse("2.6.0"),
reason="Tests not compatible with PyTorch >= 2.6",
)
def test_split():
class Chunk(Module):
def forward(self, input):
Expand Down Expand Up @@ -3340,10 +3328,6 @@ def main(
verify_model(NewOnes(), example_args, {}, expected1)


@pytest.mark.skipif(
version.parse(torch_version) >= version.parse("2.6.0"),
reason="Tests not compatible with PyTorch >= 2.6",
)
def test_to_copy():
# float
class ToFloat(Module):
Expand Down Expand Up @@ -3394,7 +3378,8 @@ def main(
) -> R.Tuple(R.Tensor((1, 2, 3, 4), dtype="float32")):
# block 0
with R.dataflow():
gv: R.Tuple(R.Tensor((1, 2, 3, 4), dtype="float32")) = (x,)
lv: R.Tensor((1, 2, 3, 4), dtype="float32") = R.astype(x, dtype="float32")
gv: R.Tuple(R.Tensor((1, 2, 3, 4), dtype="float32")) = (lv,)
R.output(gv)
return gv

Expand Down
Loading