Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -959,6 +959,12 @@ def _where(self, node: fx.Node) -> relax.Var:

########## Manipulation ##########

def _argsort(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", -1)
descending = node.args[2] if len(node.args) > 2 else node.kwargs.get("descending", False)
return self.block_builder.emit(relax.op.argsort(x, dim, descending))

def _cat(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
axis = args[1] if len(node.args) > 1 else node.kwargs.get("dim", 0)
Expand Down Expand Up @@ -1071,6 +1077,12 @@ def _scatter(self, node: fx.Node) -> relax.Var:
raise Exception("Unexpected args " + str(node.args))
return self.block_builder.emit(relax.op.scatter_elements(x, index, src, axis=dim))

def _sort(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", -1)
descending = node.args[2] if len(node.args) > 2 else node.kwargs.get("descending", False)
return self.block_builder.emit(relax.op.sort(x, dim, descending))

def _split(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
split_size = node.args[1]
Expand Down Expand Up @@ -1121,6 +1133,22 @@ def _tile(self, node: fx.Node) -> relax.Var:
dims = args[1] if isinstance(args[1], (torch.Size, tuple, list)) else args[1:]
return self.block_builder.emit(relax.op.tile(x, dims))

def _topk(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
k = args[1] if len(args) > 1 else node.kwargs.get("k", 1)
dim = args[2] if len(args) > 2 else node.kwargs.get("dim", -1)
largest = args[3] if len(args) > 3 else node.kwargs.get("largest", True)
_sorted = args[4] if len(args) > 4 else node.kwargs.get("_sorted", True)

if not _sorted:
msg = "Currently supports only sorted output for topk operator."
raise AssertionError(msg)

return self.block_builder.emit(
relax.op.topk(x, k=k, axis=dim, largest=largest, ret_type="both", dtype="int64")
)

def _transpose(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
full_idx = list(range(len(self.shape_of(args[0]))))
Expand Down
3 changes: 3 additions & 0 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -785,6 +785,7 @@ def create_convert_map(
"argmin": self._argmax_argmin(relax.op.argmin),
"where": self._where,
# tensor manipulation
"argsort": self._argsort,
"cat": self._cat,
"chunk": self._chunk,
"concat": self._cat,
Expand All @@ -803,11 +804,13 @@ def create_convert_map(
"scatter": self._scatter,
"select": self._select,
"size": self._size,
"sort": self._sort,
"split": self._split,
"squeeze": self._squeeze,
"stack": self._stack,
"take": self._take,
"tile": self._tile,
"topk": self._topk,
"transpose": self._transpose,
"unsqueeze": lambda node: self.block_builder.emit(
relax.op.expand_dims(self.env[node.args[0]], node.args[1])
Expand Down
62 changes: 62 additions & 0 deletions tests/python/relax/test_frontend_from_fx.py
Original file line number Diff line number Diff line change
Expand Up @@ -4368,5 +4368,67 @@ def main(
)


def test_argsort():
class Argsort(Module):
def forward(self, x):
return torch.argsort(x, dim=1, descending=True)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5, 3), dtype="float32"),
) -> R.Tensor((5, 3), dtype="int32"):
with R.dataflow():
lv: R.Tensor((5, 3), dtype="int32") = R.argsort(inp_0, axis=1, descending=True)
gv: R.Tensor((5, 3), dtype="int32") = lv
R.output(gv)
return gv

verify_model(Argsort(), [([5, 3], "float32")], {}, Expected)


def test_sort():
class Sort(Module):
def forward(self, x):
return torch.sort(x, dim=1, descending=True)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5, 3), dtype="float32"),
) -> R.Tensor((5, 3), dtype="float32"):
with R.dataflow():
lv: R.Tensor((5, 3), dtype="float32") = R.sort(inp_0, axis=1, descending=True)
gv: R.Tensor((5, 3), dtype="float32") = lv
R.output(gv)
return gv

verify_model(Sort(), [([5, 3], "float32")], {}, Expected)


def test_topk():
class Topk(Module):
def forward(self, x):
return torch.topk(x, k=2, dim=1, largest=True, sorted=True)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5, 3), dtype="float32"),
) -> R.Tuple(R.Tensor((5, 2), dtype="float32"), R.Tensor((5, 2), dtype="int64")):
with R.dataflow():
lv: R.Tuple(
R.Tensor((5, 2), dtype="float32"), R.Tensor((5, 2), dtype="int64")
) = R.topk(inp_0, k=2, axis=1, ret_type="both", largest=True, dtype="int64")
gv: R.Tuple(R.Tensor((5, 2), dtype="float32"), R.Tensor((5, 2), dtype="int64")) = lv
R.output(gv)
return gv

verify_model(Topk(), [([5, 3], "float32")], {}, Expected)


if __name__ == "__main__":
tvm.testing.main()
Loading