Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 94 additions & 1 deletion python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -580,6 +580,48 @@ def _addmm(self, node: fx.Node) -> relax.Var:
res = bias if res is None else self.block_builder.emit(relax.op.add(bias, res))
return res

def _avg_pool1d_impl(
self,
x: relax.Expr,
kernel_size: Union[int, Tuple[int]] = 1,
stride: Optional[Union[int, Tuple[int]]] = None,
padding: Optional[int] = 0,
ceil_mode: Optional[bool] = False,
count_include_pad: Optional[bool] = True,
) -> relax.Var:
# Expand to 3D by adding batch dim if input is 2D
x_ndim = x.struct_info.ndim
if x_ndim == 2:
x = relax.op.expand_dims(x, axis=0)
stride = kernel_size if stride is None or stride == [] else stride

result = self.block_builder.emit(
relax.op.nn.avg_pool1d(
x,
pool_size=kernel_size,
strides=stride,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
layout="NCW",
)
)
# Remove added batch dim from result
if x_ndim == 2:
result = relax.op.squeeze(result, axis=[0])
return result

def _avg_pool1d(self, node: fx.Node) -> relax.Var:
args, kwargs = node.normalized_arguments(node)
x = self.env[args[0]]
kernel_size = args[1] if len(args) > 1 else kwargs["kernel_size"]
stride = args[2] if len(args) > 2 else kwargs.get("stride", None)
padding = args[3] if len(args) > 3 else kwargs.get("padding", 0)
ceil_mode = args[4] if len(args) > 4 else kwargs.get("ceil_mode", False)
count_include_pad = args[5] if len(args) > 5 else kwargs.get("count_include_pad", True)

return self._avg_pool1d_impl(x, kernel_size, stride, padding, ceil_mode, count_include_pad)

def _avg_pool2d_impl(
self,
x: relax.Expr,
Expand All @@ -588,8 +630,13 @@ def _avg_pool2d_impl(
padding: Optional[int] = 0,
ceil_mode: Optional[bool] = False,
) -> relax.Var:
# Expand to 4D by adding batch dim if input is 3D
x_ndim = x.struct_info.ndim
if x_ndim == 3:
x = relax.op.expand_dims(x, axis=0)
stride = kernel_size if stride is None or stride == [] else stride
return self.block_builder.emit(

result = self.block_builder.emit(
relax.op.nn.avg_pool2d(
x,
pool_size=kernel_size,
Expand All @@ -599,6 +646,10 @@ def _avg_pool2d_impl(
layout="NCHW",
)
)
# Remove added batch dim from result
if x_ndim == 3:
result = relax.op.squeeze(result, axis=[0])
return result

def _avg_pool2d(self, node: fx.Node) -> relax.Var:
args, kwargs = node.normalized_arguments(node)
Expand All @@ -609,6 +660,48 @@ def _avg_pool2d(self, node: fx.Node) -> relax.Var:
ceil_mode = args[4] if len(args) > 4 else kwargs.get("ceil_mode", False)
return self._avg_pool2d_impl(x, kernel_size, stride, padding, ceil_mode)

def _avg_pool3d_impl(
self,
x: relax.Expr,
kernel_size: Union[int, Tuple[int, int, int]] = (1, 1, 1),
stride: Optional[Union[int, Tuple[int, int, int]]] = None,
padding: Optional[int] = 0,
ceil_mode: Optional[bool] = False,
count_include_pad: Optional[bool] = True,
) -> relax.Var:
# Expand to 5D by adding batch dim if input is 4D
x_ndim = x.struct_info.ndim
if x_ndim == 4:
x = relax.op.expand_dims(x, axis=0)
stride = kernel_size if stride is None or stride == [] else stride

result = self.block_builder.emit(
relax.op.nn.avg_pool3d(
x,
pool_size=kernel_size,
strides=stride,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
layout="NCDHW",
)
)
# Remove added batch dim from result
if x_ndim == 4:
result = relax.op.squeeze(result, axis=[0])
return result

def _avg_pool3d(self, node: fx.Node) -> relax.Var:
args, kwargs = node.normalized_arguments(node)
x = self.env[args[0]]
kernel_size = args[1] if len(args) > 1 else kwargs["kernel_size"]
stride = args[2] if len(args) > 2 else kwargs.get("stride", None)
padding = args[3] if len(args) > 3 else kwargs.get("padding", 0)
ceil_mode = args[4] if len(args) > 4 else kwargs.get("ceil_mode", False)
count_include_pad = args[5] if len(args) > 5 else kwargs.get("count_include_pad", True)

return self._avg_pool3d_impl(x, kernel_size, stride, padding, ceil_mode, count_include_pad)

def _baddbmm(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
batch1 = self.env[node.args[1]]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -401,7 +401,9 @@ def create_convert_map(
"adaptive_avg_pool2d.default": self._adaptive_avg_pool2d,
"adaptive_avg_pool3d.default": self._adaptive_avg_pool3d,
"addmm.default": self._addmm,
"avg_pool1d.default": self._avg_pool1d,
"avg_pool2d.default": self._avg_pool2d,
"avg_pool3d.default": self._avg_pool3d,
"baddbmm.default": self._baddbmm,
"bmm.default": self._binary_op(
partial(relax.op.linear_algebra.matmul, out_dtype="float32"), operator.matmul
Expand Down
22 changes: 22 additions & 0 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,15 @@ def _adaptive_avg_pool3d_module(self, node: fx.Node) -> relax.Var:
result = relax.op.squeeze(result, axis=[0])
return result

def _avg_pool1d_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
kernel_size = module.kernel_size
stride = module.stride
padding = module.padding
ceil_mode = module.ceil_mode
return self._avg_pool1d_impl(x, kernel_size, stride, padding, ceil_mode)

def _avg_pool2d_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
Expand All @@ -239,6 +248,15 @@ def _avg_pool2d_module(self, node: fx.Node) -> relax.Var:
ceil_mode = module.ceil_mode
return self._avg_pool2d_impl(x, kernel_size, stride, padding, ceil_mode)

def _avg_pool3d_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
kernel_size = module.kernel_size
stride = module.stride
padding = module.padding
ceil_mode = module.ceil_mode
return self._avg_pool3d_impl(x, kernel_size, stride, padding, ceil_mode)

def _batch_norm_2d_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
Expand Down Expand Up @@ -711,7 +729,9 @@ def create_convert_map(
nn.AdaptiveAvgPool1d: self._adaptive_avg_pool1d_module,
nn.AdaptiveAvgPool2d: self._adaptive_avg_pool2d_module,
nn.AdaptiveAvgPool3d: self._adaptive_avg_pool3d_module,
nn.AvgPool1d: self._avg_pool1d_module,
nn.AvgPool2d: self._avg_pool2d_module,
nn.AvgPool3d: self._avg_pool3d_module,
nn.BatchNorm2d: self._batch_norm_2d_module,
nn.Conv1d: self._conv1d_module,
nn.Conv2d: self._conv2d_module,
Expand Down Expand Up @@ -824,7 +844,9 @@ def create_convert_map(
"adaptive_avg_pool2d": self._adaptive_avg_pool2d,
"adaptive_avg_pool3d": self._adaptive_avg_pool3d,
"addmm": self._addmm,
"avg_pool1d": self._avg_pool1d,
"avg_pool2d": self._avg_pool2d,
"avg_pool3d": self._avg_pool3d,
"baddbmm": self._baddbmm,
"bmm": self._binary_op(
partial(relax.op.linear_algebra.matmul, out_dtype="float32"), operator.matmul
Expand Down
4 changes: 2 additions & 2 deletions python/tvm/relax/op/nn/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -840,7 +840,7 @@ def avg_pool1d(
padding: Union[int, Tuple[int, ...]] = (0, 0),
dilation: Union[int, Tuple[int, int]] = (1,),
ceil_mode: bool = False,
count_include_pad: bool = False,
count_include_pad: bool = True,
layout: str = "NCW",
out_layout: Optional[str] = None,
) -> Expr:
Expand Down Expand Up @@ -1008,7 +1008,7 @@ def avg_pool3d(
padding: Union[int, Tuple[int, ...]] = (0, 0, 0),
dilation: Union[int, Tuple[int, int]] = (1, 1, 1),
ceil_mode: bool = False,
count_include_pad: bool = False,
count_include_pad: bool = True,
layout: str = "NCDHW",
out_layout: Optional[str] = None,
) -> Expr:
Expand Down
Loading