Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion include/tvm/topi/nn/layer_norm.h
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ inline Tensor layer_norm(const Tensor& data, const Tensor& gamma, const Tensor&
auto real_axis = GetRealAxis(static_cast<int>(ndim), axis);
auto reduce_axes = MakeReduceAxes(real_axis, data);
auto target_shape =
MakeReduceTargetShape(real_axis, data, /*keepdims=*/false, /*atleast1d=*/true);
MakeReduceTargetShape(real_axis, data, /*keepdims=*/false, /*atleast1d=*/false);
auto func = MakeTupleSumReducer();

auto compute = [ndim, is_float16, &real_axis, &reduce_axes, &func,
Expand Down
54 changes: 54 additions & 0 deletions tests/python/relax/test_transform_legalize_ops_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -2599,6 +2599,60 @@ def layer_norm(rxplaceholder: T.Buffer((T.int64(2), T.int64(3), T.int64(4), T.in
tvm.ir.assert_structural_equal(mod, Expected)


def test_layer_norm_1d():
# fmt: off
@I.ir_module
class LayerNorm_1D:
@R.function
def forward(x: R.Tensor((3,), dtype="float32"), layer_norm_weight: R.Tensor((3,), dtype="float32"), layer_norm_bias: R.Tensor((3,), dtype="float32")) -> R.Tensor((3,), dtype="float32"):
R.func_attr({"num_input": 1})
with R.dataflow():
layer_norm: R.Tensor((3,), dtype="float32") = R.nn.layer_norm(x, layer_norm_weight, layer_norm_bias, axes=[-1], epsilon=1.0000000000000001e-05, center=True, scale=True)
gv: R.Tensor((3,), dtype="float32") = layer_norm
R.output(gv)
return gv

@I.ir_module
class LayerNorm_1D_Expected:
@T.prim_func(private=True)
def layer_norm(x: T.Buffer((T.int64(3),), "float32"), layer_norm_weight: T.Buffer((T.int64(3),), "float32"), layer_norm_bias: T.Buffer((T.int64(3),), "float32"), T_layer_norm: T.Buffer((T.int64(3),), "float32")):
T.func_attr({"tir.noalias": True})
# with T.block("root"):
x_red_temp_v0 = T.alloc_buffer(())
x_red_temp_v1 = T.alloc_buffer(())
for k0 in range(T.int64(3)):
with T.block("x_red_temp"):
v_k0 = T.axis.reduce(T.int64(3), k0)
T.reads(x[v_k0])
T.writes(x_red_temp_v0[()], x_red_temp_v1[()])
with T.init():
x_red_temp_v0[()] = T.float32(0.0)
x_red_temp_v1[()] = T.float32(0.0)
v_x_red_temp_v0: T.float32 = x_red_temp_v0[()] + x[v_k0]
v_x_red_temp_v1: T.float32 = x_red_temp_v1[()] + x[v_k0] * x[v_k0]
x_red_temp_v0[()] = v_x_red_temp_v0
x_red_temp_v1[()] = v_x_red_temp_v1
for ax0 in range(T.int64(3)):
with T.block("T_layer_norm"):
v_ax0 = T.axis.spatial(T.int64(3), ax0)
T.reads(x[v_ax0], x_red_temp_v0[()], x_red_temp_v1[()], layer_norm_weight[v_ax0], layer_norm_bias[v_ax0])
T.writes(T_layer_norm[v_ax0])
T_layer_norm[v_ax0] = (x[v_ax0] - x_red_temp_v0[()] * T.float32(0.33333333333333331)) * T.rsqrt(x_red_temp_v1[()] * T.float32(0.33333333333333331) - x_red_temp_v0[()] * T.float32(0.33333333333333331) * (x_red_temp_v0[()] * T.float32(0.33333333333333331)) + T.float32(1.0000000000000001e-05)) * layer_norm_weight[v_ax0] + layer_norm_bias[v_ax0]

@R.function
def forward(x: R.Tensor((3,), dtype="float32"), layer_norm_weight: R.Tensor((3,), dtype="float32"), layer_norm_bias: R.Tensor((3,), dtype="float32")) -> R.Tensor((3,), dtype="float32"):
R.func_attr({"num_input": 1})
cls = LayerNorm_1D_Expected
with R.dataflow():
layer_norm = R.call_tir(cls.layer_norm, (x, layer_norm_weight, layer_norm_bias), out_sinfo=R.Tensor((3,), dtype="float32"))
gv: R.Tensor((3,), dtype="float32") = layer_norm
R.output(gv)
return gv
# fmt: on
mod = LegalizeOps()(LayerNorm_1D)
tvm.ir.assert_structural_equal(mod, LayerNorm_1D_Expected)


def test_layer_norm_fp16():
# fmt: off
@tvm.script.ir_module
Expand Down