Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Keras] force const dtype to be float32 #2376

Merged
merged 2 commits into from
Jan 6, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions python/tvm/relay/frontend/keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ def _get_pad_pair(input1d, kernel1d, stride1d):

def _get_elu(inexpr, alpha):
"""A helper method for elu."""
return _op.negative(alpha) * _op.nn.relu(_expr.const(1.) - \
return _op.negative(alpha) * _op.nn.relu(_expr.const(1., dtype='float32') - \
_op.exp(inexpr)) + _op.nn.relu(inexpr)


Expand Down Expand Up @@ -69,7 +69,7 @@ def _convert_activation(inexpr, keras_layer, _):
elif act_type == 'relu':
return _op.nn.relu(inexpr)
elif act_type == 'softplus':
return _op.log(_op.add(_op.exp(inexpr), _expr.const(1.)))
return _op.log(_op.add(_op.exp(inexpr), _expr.const(1., dtype='float32')))
elif act_type == 'elu':
alpha = keras_layer.alpha if hasattr(keras_layer, 'alpha') else 1.
alpha = _expr.const(alpha, dtype='float32')
Expand All @@ -86,10 +86,10 @@ def _convert_activation(inexpr, keras_layer, _):
elif act_type == 'relu6':
return _op.clip(inexpr, a_min=0., a_max=6.)
elif act_type == 'softsign':
return inexpr / (_expr.const(1.) + _op.abs(inexpr))
return inexpr / (_expr.const(1., dtype='float32') + _op.abs(inexpr))
elif act_type == 'hard_sigmoid':
transformX = (_expr.const(0.2) * inexpr) + _expr.const(0.5)
return _op.clip(transformX, a_min=0., a_max=1.)
x = (_expr.const(0.2, dtype='float32') * inexpr) + _expr.const(0.5, dtype='float32')
return _op.clip(x, a_min=0., a_max=1.)
else:
raise TypeError("Unsupported activation type : {}".format(act_type))

Expand Down Expand Up @@ -522,7 +522,7 @@ def _convert_gru(inexpr, keras_layer, etab):
recurrent_h = _op.nn.dense(rec_act_r * h_tm1_op, rec_weights[1], units=units)
act_hh = _convert_activation(x_h + recurrent_h, keras_layer, None)
# previous and candidate state mixed by update gate
output = rec_act_z * h_tm1_op + (_expr.const(1.) - rec_act_z) * act_hh
output = rec_act_z * h_tm1_op + (_expr.const(1., dtype='float32') - rec_act_z) * act_hh
out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0])
output = _op.reshape(output, newshape=out_shape)
return [output, output]
Expand Down