Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Doc] TFLite frontend tutorial #2508

Merged
merged 2 commits into from
Jan 29, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 197 additions & 0 deletions tutorials/frontend/from_tflite.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
"""
Compile TFLite Models
===================
**Author**: `Zhao Wu <https://github.com/FrozenGene>`_

This article is an introductory tutorial to deploy TFLite models with Relay.

To get started, Flatbuffers and TFLite package needs to be installed as prerequisites.

A quick solution is to install Flatbuffers via pip

.. code-block:: bash

pip install flatbuffers --user

To install TFlite packages, you could use our prebuilt wheel:

.. code-block:: bash

# For python3:
wget https://github.com/dmlc/web-data/tree/master/tensorflow/tflite/whl/tflite-0.0.1-py3-none-any.whl
pip install tflite-0.0.1-py3-none-any.whl --user

# For python2:
wget https://github.com/dmlc/web-data/tree/master/tensorflow/tflite/whl/tflite-0.0.1-py2-none-any.whl
pip install tflite-0.0.1-py2-none-any.whl --user


or you could generate TFLite package by yourself. The steps are as following:

.. code-block:: bash

# Get the flatc compiler.
# Please refer to https://github.com/google/flatbuffers for details
# and make sure it is properly installed.
flatc --version

# Get the TFLite schema.
wget https://raw.githubusercontent.com/tensorflow/tensorflow/r1.12/tensorflow/contrib/lite/schema/schema.fbs

# Generate TFLite package.
flatc --python schema.fbs

# Add it to PYTHONPATH.
export PYTHONPATH=/path/to/tflite


Now please check if TFLite package is installed successfully, ``python -c "import tflite"``

Below you can find an example for how to compile TFLite model using TVM.
"""
######################################################################
# Utils for downloading and extracting zip files
# ---------------------------------------------

def download(url, path, overwrite=False):
import os
if os.path.isfile(path) and not overwrite:
print('File {} existed, skip.'.format(path))
return
print('Downloading from url {} to {}'.format(url, path))
try:
import urllib.request
urllib.request.urlretrieve(url, path)
except:
import urllib
urllib.urlretrieve(url, path)

def extract(path):
import tarfile
if path.endswith("tgz") or path.endswith("gz"):
tar = tarfile.open(path)
tar.extractall()
tar.close()
else:
raise RuntimeError('Could not decompress the file: ' + path)


######################################################################
# Load pretrained TFLite model
# ---------------------------------------------
# we load mobilenet V1 TFLite model provided by Google
model_url = "http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz"

# we download model tar file and extract, finally get mobilenet_v1_1.0_224.tflite
download(model_url, "mobilenet_v1_1.0_224.tgz", False)
extract("mobilenet_v1_1.0_224.tgz")

# now we have mobilenet_v1_1.0_224.tflite on disk and open it
tflite_model_file = "mobilenet_v1_1.0_224.tflite"
tflite_model_buf = open(tflite_model_file, "rb").read()

# get TFLite model from buffer
import tflite.Model
tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_buf, 0)

######################################################################
# Load a test image
# ---------------------------------------------
# A single cat dominates the examples!
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np

image_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
download(image_url, 'cat.png')
resized_image = Image.open('cat.png').resize((224, 224))
plt.imshow(resized_image)
plt.show()
image_data = np.asarray(resized_image).astype("float32")

# convert HWC to CHW
image_data = image_data.transpose((2, 0, 1))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

so tf-lite model itself is in NCHW format?

Copy link
Member Author

@FrozenGene FrozenGene Jan 27, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

TFLite itself is NHWC, we accept NCHW currently like other converters (for example Tensorflow to CoreML converters). Have done it in TFLite Relay frontend transparently currently. We could leave it for future discussion whether we should do it in graph pass or other places. This is a start. You could refer PR #2365 to see more details.

I will update the docs as your comments

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, can we explain this a bit in the comments? Since the layout assumption might change later, we'd better ask users to pay attention.

Besides, would you mind open an RFC since it might deserve a serious design discussion.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

My note has been added to users for paying attention.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

RFC: #2519


# after expand_dims, we have format NCHW
image_data = np.expand_dims(image_data, axis=0)

# preprocess image as described here:
# https://github.com/tensorflow/models/blob/edb6ed22a801665946c63d650ab9a0b23d98e1b1/research/slim/preprocessing/inception_preprocessing.py#L243
image_data[:, 0, :, :] = 2.0 / 255.0 * image_data[:, 0, :, :] - 1
image_data[:, 1, :, :] = 2.0 / 255.0 * image_data[:, 1, :, :] - 1
image_data[:, 2, :, :] = 2.0 / 255.0 * image_data[:, 2, :, :] - 1
print('input', image_data.shape)

####################################################################
#
# .. note:: Input layout:
#
# Currently, TVM TFLite frontend accepts ``NCHW`` as input layout.

######################################################################
# Compile the model with relay
# ---------------------------------------------

# TFLite input tensor name, shape and type
input_tensor = "input"
input_shape = (1, 3, 224, 224)
input_dtype = "float32"

# parse TFLite model and convert into Relay computation graph
from tvm import relay
func, params = relay.frontend.from_tflite(tflite_model,
shape_dict={input_tensor: input_shape},
dtype_dict={input_tensor: input_dtype})

# targt x86 cpu
target = "llvm"
with relay.build_module.build_config(opt_level=3):
graph, lib, params = relay.build(func, target, params=params)

######################################################################
# Execute on TVM
# ---------------------------------------------
import tvm
from tvm.contrib import graph_runtime as runtime

# create a runtime executor module
module = runtime.create(graph, lib, tvm.cpu())

# feed input data
module.set_input(input_tensor, tvm.nd.array(image_data))

# feed related params
module.set_input(**params)

# run
module.run()

# get output
tvm_output = module.get_output(0).asnumpy()

######################################################################
# Display results
# ---------------------------------------------

# load label file
label_file_url = ''.join(['https://raw.githubusercontent.com/',
'tensorflow/tensorflow/master/tensorflow/lite/java/demo/',
'app/src/main/assets/',
'labels_mobilenet_quant_v1_224.txt'])
label_file = "labels_mobilenet_quant_v1_224.txt"
download(label_file_url, label_file)

# map id to 1001 classes
labels = dict()
with open(label_file) as f:
for id, line in enumerate(f):
labels[id] = line

# convert result to 1D data
predictions = np.squeeze(tvm_output)

# get top 1 prediction
prediction = np.argmax(predictions)

# convert id to class name and show the result
print("The image prediction result is: id " + str(prediction) + " name: " + labels[prediction])