Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[RELAY/OP] Gradient of relay level1 ops #2633

Merged
merged 2 commits into from
Feb 22, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions python/tvm/relay/expr.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,9 @@ def astype(self, dtype):
"""
return _make.cast(self, dtype)

def __neg__(self):
return _op_make.negative(self)

def __add__(self, other):
if isinstance(other, Expr):
return _op_make.add(self, other)
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/op/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

# operator registry
from . import _tensor
from . import _tensor_grad
from . import _transform
from . import _reduce
from ..expr import Expr
Expand Down
18 changes: 0 additions & 18 deletions python/tvm/relay/op/_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,25 +3,7 @@
from __future__ import absolute_import
import topi
from .op import register_compute, register_schedule, register_pattern
from .op import register_gradient
from .op import schedule_injective, OpPattern
from .transform import collapse_sum_like
from .tensor import negative


def add_grad(orig, grad):
return [collapse_sum_like(grad, orig.args[0]), collapse_sum_like(grad, orig.args[1])]


register_gradient("add", add_grad)


def subtract_grad(orig, grad):
return [collapse_sum_like(grad, orig.args[0]),
collapse_sum_like(negative(grad), orig.args[1])]


register_gradient("subtract", subtract_grad)

schedule_broadcast = schedule_injective
schedule_elemwise = schedule_injective
Expand Down
79 changes: 79 additions & 0 deletions python/tvm/relay/op/_tensor_grad.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
#pylint: disable=invalid-name, unused-argument
"""Backend compiler related feature registration"""
from __future__ import absolute_import
from ..expr import const
from .op import register_gradient
from .transform import collapse_sum_like, where
from .tensor import exp, negative, power, less
from .tensor import zeros_like, ones_like


@register_gradient("log")
def log_grad(orig, grad):
"""Returns [grad * (1 / x)]"""
x = orig.args[0]
return [grad * ones_like(x) / x]


@register_gradient("exp")
def exp_grad(orig, grad):
"""Returns [grad * exp(x)]"""
return [grad * exp(orig.args[0])]


@register_gradient("sqrt")
def sqrt_grad(orig, grad):
"""Returns [grad * 0.5 * (x ^ -0.5)]"""
a = const(0.5) # (TODO) type?
return [grad * a * power(orig.args[0], negative(a))]


@register_gradient("sigmoid")
def sigmoid_grad(orig, grad):
"""Returns [grad * sigmoid(x) * (1 - sigmoid(x))]."""
return [grad * orig * (ones_like(orig) - orig)]


@register_gradient("tanh")
def tanh_grad(orig, grad):
"""Returns grad * (1 - tanh(x) * tanh(x))."""
return [grad * ones_like(orig) - orig * orig]


@register_gradient("nn.relu")
def relu_grad(orig, grad):
"""Returns grad * (select(x < 0, 0, 1))."""
x = orig.args[0]
zeros = zeros_like(x)
ones = ones_like(x)
return [where(less(x, zeros), zeros, ones * grad)]


@register_gradient("add")
def add_grad(orig, grad):
"""Returns [grad, grad]"""
return [collapse_sum_like(grad, orig.args[0]),
collapse_sum_like(grad, orig.args[1])]


@register_gradient("subtract")
def subtract_grad(orig, grad):
"""Returns [grad, -grad]"""
return [collapse_sum_like(grad, orig.args[0]),
collapse_sum_like(negative(grad), orig.args[1])]


@register_gradient("multiply")
def multiply_grad(orig, grad):
"""Returns [grad * y, grad * x]"""
x, y = orig.args
return [collapse_sum_like(grad * y, x),
collapse_sum_like(grad * x, y)]


@register_gradient("divide")
def divide_grad(orig, grad):
"""Returns [grad / y, - grad * (x / y) / y]"""
x, y = orig.args
return [collapse_sum_like(grad / y, x),
collapse_sum_like(- (grad * orig / y), y)]
ZihengJiang marked this conversation as resolved.
Show resolved Hide resolved
2 changes: 1 addition & 1 deletion python/tvm/relay/op/op.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ def register_pattern(op_name, pattern, level=10):
"""
return register(op_name, "TOpPattern", pattern, level)

def register_gradient(op_name, fgradient, level=10):
def register_gradient(op_name, fgradient=None, level=10):
"""Register operator pattern for an op.

Parameters
Expand Down
76 changes: 76 additions & 0 deletions tests/python/relay/test_op_grad_level1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
import tvm
import numpy as np
from tvm import relay
from tvm.relay.ir_pass import gradient, infer_type
from tvm.relay.testing import ctx_list

def sigmoid(x):
one = np.ones_like(x)
return one / (one + np.exp(-x))

def relu(x):
x_copy = np.copy(x)
np.maximum(x_copy, 0, x_copy)
return x_copy

def test_unary_op():
def check_single_op(opfunc, ref):
shape = (10, 4)
dtype = 'float32'
tp = relay.TensorType(shape, dtype)
x = relay.var("x", tp)
y = opfunc(x)

if ref is not None:
data = np.random.rand(*shape).astype(dtype)
ref_grad = ref(data)
fwd_func = relay.Function([x], y)
bwd_func = infer_type(gradient(fwd_func))

for target, ctx in ctx_list():
intrp = relay.create_executor(ctx=ctx, target=target)
op_res, (op_grad, ) = intrp.evaluate(bwd_func)(data)
np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01)

for opfunc, ref in [(tvm.relay.log, lambda x: 1 / x),
(tvm.relay.exp, np.exp),
(tvm.relay.sigmoid, lambda x: sigmoid(x) * (1 - sigmoid(x))),
(tvm.relay.tanh, lambda x: 1 - np.tanh(x) * np.tanh(x)),
(tvm.relay.sqrt, lambda x: 0.5 * np.power(x, -0.5)),
(relay.nn.relu, lambda x: np.where(x < 0, np.zeros_like(x), np.ones_like(x)))]:
check_single_op(opfunc, ref)


def test_binary_op():
def inst(vars, sh):
return [vars.get(s, s) for s in sh]

def check_binary_op(opfunc, ref):
s = (5, 10, 5)
t = relay.TensorType((5, 10, 5))
x = relay.var("x", t)
y = relay.var("y", t)
z = opfunc(x, y)

x_data = np.random.rand(*s).astype(t.dtype)
y_data = np.random.rand(*s).astype(t.dtype)
ref_grad0, ref_grad1 = ref(x_data, y_data)
fwd_func = relay.Function([x, y], z)
bwd_func = infer_type(gradient(fwd_func))

for target, ctx in ctx_list():
intrp = relay.create_executor(ctx=ctx, target=target)
op_res, (op_grad0, op_grad1) = intrp.evaluate(bwd_func)(x_data, y_data)
np.testing.assert_allclose(op_grad0.asnumpy(), ref_grad0, rtol=0.01)
np.testing.assert_allclose(op_grad1.asnumpy(), ref_grad1, rtol=0.01)

for opfunc, ref in [(relay.add, lambda x, y: [np.ones_like(x), np.ones_like(y)]),
(relay.subtract, lambda x, y: [np.ones_like(x), -np.ones_like(y)]),
(relay.multiply, lambda x, y: [y, x]),
(relay.divide, lambda x, y: [1 / y, - x / (y**2)])]:
check_binary_op(opfunc, ref)


if __name__ == "__main__":
test_unary_op()
test_binary_op()
16 changes: 8 additions & 8 deletions tests/python/relay/test_op_level1.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,11 @@ def check_single_op(opfunc, ref):


for opfunc, ref in [(tvm.relay.log, np.log),
(tvm.relay.exp, np.exp),
(tvm.relay.sqrt, np.sqrt),
(tvm.relay.sigmoid, sigmoid),
(tvm.relay.tanh, np.tanh),
(relay.nn.relu, relu)]:
(tvm.relay.exp, np.exp),
(tvm.relay.sqrt, np.sqrt),
(tvm.relay.sigmoid, sigmoid),
(tvm.relay.tanh, np.tanh),
(relay.nn.relu, relu)]:
check_single_op(opfunc, ref)


Expand Down Expand Up @@ -84,9 +84,9 @@ def check_binary_op(opfunc, ref):
np.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=0.01)

for opfunc, ref in [(relay.add, np.add),
(relay.subtract, np.subtract),
(relay.multiply, np.multiply),
(relay.divide, np.divide)]:
(relay.subtract, np.subtract),
(relay.multiply, np.multiply),
(relay.divide, np.divide)]:
check_binary_op(opfunc, ref)


Expand Down