Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhance upsample operator to adapt onnx opset version 9 for nnvm comp… #2968

Merged
merged 3 commits into from
Apr 23, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion nnvm/python/nnvm/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,8 +388,14 @@ class Upsample(OnnxOpConverter):
"""

@classmethod
def _impl_v7(cls, inputs, attr, params):
def _impl_v9(cls, inputs, attr, params):
scales = attr.get('scales')
if not scales:
#Here we are going to higher OPSET version.
assert len(inputs) == 2, "Upsample op take 2 inputs, {} given".format(len(inputs))
input_name = inputs[1].list_input_names()[0]
scales = params[input_name].asnumpy()
inputs = inputs[:1]
assert len(scales) == 4 and scales[0] == 1.0 and scales[1] == 1.0 and scales[2] == scales[3]
mode = attr.get('mode')
if mode == b'nearest':
Expand Down
32 changes: 32 additions & 0 deletions nnvm/tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -422,9 +422,41 @@ def _test_upsample_bilinear():
tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)

def _test_upsample_bilinear_opset9():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in','scales'], ['out'], mode='linear')
scales=[1.0, 1.0, 2.0, 2.0]
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.bilinear_resize_python(in_array, (3*scale, 3*scale), "NCHW")

ref_array = np.array(scales)
ref_node = helper.make_node('Constant',
inputs=[],
outputs=['scales'],
value=onnx.helper.make_tensor(name = 'const_tensor',
data_type = TensorProto.FLOAT,
dims = ref_array.shape,
vals = ref_array.flatten().astype(float)))

graph = helper.make_graph([ref_node, y],
'upsample_bilinear_opset9_test',
inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))],
outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])

model = helper.make_model(graph, producer_name='upsample_bilinear_opset9_test')
inputs = []
inputs.append(in_array)

for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, inputs, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)

def test_upsample():
_test_upsample_nearest()
_test_upsample_bilinear()
_test_upsample_bilinear_opset9()

def _test_softmax(inshape, axis):
opname = 'Softmax'
Expand Down