Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ANALYSIS] Mac count deconv #3469

Merged
merged 4 commits into from
Jul 1, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions python/tvm/relay/op/nn/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,12 @@ def conv2d_transpose(data,
dilation : Tuple[int], optional
Specifies the dilation rate to be used for dilated convolution.

channels : int, optional
Number of output channels of this convolution.

kernel_size : tuple of int, optional
The spatial of the convolution kernel.

groups : int, optional
Number of groups for grouped convolution.

Expand Down
45 changes: 41 additions & 4 deletions src/relay/pass/mac_count.cc
Original file line number Diff line number Diff line change
Expand Up @@ -88,11 +88,44 @@ int64_t ConvMacCount(const Call& call_node) {
<< "The dimension of the output tensor in Conv 2D should be 4 or 5.";
int64_t count = GetCartesianProd(output_tensor) * GetCartesianProd(kernel_size);
CHECK_EQ(input_channel % conv_2d_attr->groups, 0)
<< "The number of input channels is not divisble by groups.";
<< "The number of input channels is not divisble by groups.";
count *= input_channel/conv_2d_attr->groups;
return count;
}

int64_t Conv2dTransposeMacCount(const Call& call_node) {
if (!call_node->checked_type_.defined()) {
LOG(WARNING) << "The infer type pass should be called before the mac count pass";
return 0;
}
Array<Expr> args = call_node->args;
CHECK(args.size() == 2)
<< "The number of input arguments of a CONV 2D Transpose node should be 2.";
const auto* conv_2d_transpose_attr = call_node->attrs.as<Conv2DTransposeAttrs>();
const auto* data_type = args[0]->checked_type().as<TensorTypeNode>();
Array<IndexExpr> data_shape = data_type->shape;
std::string data_layout = conv_2d_transpose_attr->data_layout;
int32_t C_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('C'));
int32_t c_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('c'));
CHECK(C_ind != -1)
<< "There is no input channel dimension.";
int64_t input_channel = static_cast<int64_t>(data_shape[C_ind].as<IntImm>()->value);
if (c_ind != -1)
input_channel *= static_cast<int64_t>(data_shape[c_ind].as<IntImm>()->value);
Array<IndexExpr> kernel_size = conv_2d_transpose_attr->kernel_size;
CHECK(kernel_size.size() == 2)
<< "The dimension of the kernel in Conv 2D Transpose should be 2.";
const auto* expr = call_node->checked_type().as<TensorTypeNode>();
Array<IndexExpr> output_tensor = expr->shape;
CHECK(output_tensor.size() == 4 || output_tensor.size() == 5)
<< "The dimension of the output tensor in Conv 2D Transpose should be 4 or 5.";
int64_t count = GetCartesianProd(output_tensor) * GetCartesianProd(kernel_size);
CHECK_EQ(input_channel % conv_2d_transpose_attr->groups, 0)
<< "The number of input channels is not divisble by groups.";
count *= input_channel/conv_2d_transpose_attr->groups;
return count;
}

int64_t DenseMacCount(const Call& call_node) {
if (!call_node->checked_type_.defined()) {
LOG(WARNING) << "The infer type pass should be called before the mac count pass";
Expand All @@ -106,20 +139,23 @@ int64_t DenseMacCount(const Call& call_node) {
Array<IndexExpr> data_shape = data_type->shape;
Array<IndexExpr> weight_shape = weight_type->shape;
CHECK(data_shape.size() == 2 && weight_shape.size() == 2)
<< "The dimension of an input tensor to Dense node should be 2.";
<< "The dimension of an input tensor to Dense node should be 2.";
int64_t d1 = static_cast<int64_t>(data_shape[0].as<IntImm>()->value);
int64_t d2 = static_cast<int64_t>(data_shape[1].as<IntImm>()->value);
int64_t d3 = static_cast<int64_t>(weight_shape[0].as<IntImm>()->value);
int64_t d4 = static_cast<int64_t>(weight_shape[1].as<IntImm>()->value);
CHECK(d2 == d4)
<< "The dimensions of input arguments do not match.";
<< "The dimensions of input arguments do not match.";
int64_t count = d1 * d2 * d3;
return count;
}

RELAY_REGISTER_OP("nn.conv2d")
.set_attr<FMacCount>("FMacCount", ConvMacCount);

RELAY_REGISTER_OP("nn.conv2d_transpose")
.set_attr<FMacCount>("FMacCount", Conv2dTransposeMacCount);

RELAY_REGISTER_OP("nn.dense")
.set_attr<FMacCount>("FMacCount", DenseMacCount);

Expand All @@ -129,7 +165,8 @@ class MacCounter : private ExprVisitor {
count_ = 0;
}
static int64_t GetTotalMacNumber(const Expr& expr) {
LOG(INFO) << "This pass only counts MACs in direct CONV 2D and Dense ops";
LOG(INFO) << "This pass only counts MACs in direct CONV 2D, "
<< "CONV 2D Transpose and Dense ops";
MacCounter counter;
counter(expr);
return counter.count_;
Expand Down
31 changes: 30 additions & 1 deletion tests/python/relay/test_pass_mac_count.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def test_conv():
weight,
channels=output_channel,
kernel_size=(kh, kw),
padding=(1, 1))
padding=(h_padding, w_padding))
func = relay.Function([data, weight],
relay.Tuple(tvm.convert([conv2d])))
func = relay.ir_pass.infer_type(func)
Expand Down Expand Up @@ -127,8 +127,37 @@ def test_depthwise_conv2d():
compute_count = relay.ir_pass.get_total_mac_number(func)
assert compute_count == 2 * np.prod(dshape) * 3*3

def test_conv_2d_transpose():
batch_size = 1
input_channel = 3
h = 224
w = 224
output_channel = 64
kh = 7
kw = 7
h_padding = 1
w_padding = 1
oh = h - h_padding * 2 + kh - 1
ow = w - w_padding * 2 + kw - 1
dshape = (batch_size, input_channel, h, w)
weight = relay.var("weight", shape=(input_channel, output_channel, kh, kw))
data = relay.var("data", shape=dshape)
conv2d_transpose = relay.nn.conv2d_transpose(
data,
weight,
channels=output_channel,
kernel_size=(kh, kw),
padding=(h_padding, w_padding))
func = relay.Function([data, weight],
relay.Tuple(tvm.convert([conv2d_transpose])))
func = relay.ir_pass.infer_type(func)
compute_count = relay.ir_pass.get_total_mac_number(func)
expect_count = batch_size * input_channel * oh * ow * output_channel * kh * kw
assert compute_count == expect_count

if __name__ == "__main__":
test_conv()
test_gemm()
test_simple_network()
test_depthwise_conv2d()
test_conv_2d_transpose()