Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve the lowering of Qnn Dense #4213

Merged
merged 6 commits into from
Oct 30, 2019
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion include/tvm/relay/qnn/attrs.h
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@ struct QnnDenseAttrs : public tvm::AttrsNode<QnnDenseAttrs> {
int32_t input_zero_point;
int32_t kernel_zero_point;

TVM_DECLARE_ATTRS(QnnDenseAttrs, "relay.attrs.qnn.QnnDenseAttrs") {
TVM_DECLARE_ATTRS(QnnDenseAttrs, "relay.attrs.QnnDenseAttrs") {
TVM_ATTR_FIELD(units)
.describe("Number of hidden units of the dense transformation.");
TVM_ATTR_FIELD(out_dtype)
Expand Down
4 changes: 4 additions & 0 deletions python/tvm/relay/qnn/op/op_attrs.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,3 +22,7 @@
@register_relay_attr_node
class QnnConv2DAttrs(Attrs):
"""Attributes for qnn.conv2d"""

@register_relay_attr_node
class QnnDenseAttrs(Attrs):
"""Attributes for qnn.dense"""
7 changes: 0 additions & 7 deletions src/relay/qnn/op/convolution.cc
Original file line number Diff line number Diff line change
Expand Up @@ -70,13 +70,6 @@ using WorkloadType = std::tuple<int, int, int, int, int>;
*/
WorkloadType GetWorkload(const Array<tvm::relay::Type>& arg_types, const QnnConv2DAttrs* param) {
// Get conv parameters.
auto get_shape = [](const Type& type) {
auto input_tt = type.as<TensorTypeNode>();
CHECK(input_tt != nullptr) << "Type information missing."
<< " Please run infer_type pass.";
return input_tt->shape;
};

const auto in_shape = get_shape(arg_types[0]);
int batch_size, in_channels;
if (param->data_layout == "NCHW") {
Expand Down
126 changes: 87 additions & 39 deletions src/relay/qnn/op/dense.cc
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
#include <tvm/relay/qnn/attrs.h>
#include "../../op/nn/nn.h"
#include "../../pass/pattern_util.h"
#include "../util.h"

namespace tvm {
namespace relay {
Expand All @@ -37,33 +38,27 @@ namespace qnn {
// relay.op.qnn.dense
TVM_REGISTER_NODE_TYPE(QnnDenseAttrs);

bool QnnDenseRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
bool QnnDenseRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 3);
const auto* data = types[0].as<TensorTypeNode>();
const auto* weight = types[1].as<TensorTypeNode>();
if (data == nullptr || weight == nullptr) return false;
const auto* param = attrs.as<QnnDenseAttrs>();
CHECK(param != nullptr) << "QnnConv2DAttrs cannot be nullptr.";
CHECK(param != nullptr) << "QnnDenseAttrs cannot be nullptr.";
CHECK(data->dtype == Int(8) || data->dtype == UInt(8))
<< "Expected quantized dense type(int8, uint8) for input but was " << data->dtype;
<< "Expected quantized dense type(int8, uint8) for input but was " << data->dtype;
CHECK(weight->dtype == Int(8) || weight->dtype == UInt(8))
<< "Expected quantized dense type(int8, uint8) for weight but was " << weight->dtype;
<< "Expected quantized dense type(int8, uint8) for weight but was " << weight->dtype;
CHECK(param->out_dtype == Int(32))
<< "Expected quantized dense type(int32) for output but was " << param->out_dtype;
<< "Expected quantized dense type(int32) for output but was " << param->out_dtype;
CHECK(param->out_dtype.bits() > 0) << "Output dtype bits should be greater than 0.";
return DenseRel<QnnDenseAttrs>(types, num_inputs, attrs, reporter);
}

// Positional relay function to create quantized dense operator used by frontend FFI.
Expr MakeQuantizedDense(Expr data,
Expr weight,
IndexExpr units,
int32_t input_zero_point,
int32_t kernel_zero_point,
DataType out_dtype) {
Expr MakeQuantizedDense(Expr data, Expr weight, IndexExpr units, int32_t input_zero_point,
int32_t kernel_zero_point, DataType out_dtype) {
auto attrs = make_node<QnnDenseAttrs>();
attrs->units = std::move(units);
attrs->out_dtype = out_dtype;
Expand All @@ -73,40 +68,93 @@ Expr MakeQuantizedDense(Expr data,
return CallNode::make(op, {data, weight}, Attrs(attrs), {});
}

/**
* \brief Lowers Qnn convolution in terms of core operators in relay.
* Mathematically it is equals to -
* Dense((quantized_input - input_zero_point;int32), (quantized_kernel - kernel_zero_point; int32))
*
* \param attrs QnnDenseAttrs for Qnn Dense layer.
Expr DenseFirstTerm(const Expr& quantized_data, const Expr& quantized_kernel,
const QnnDenseAttrs* attrs) {
return Dense(quantized_data, quantized_kernel, attrs->units, attrs->out_dtype);
}

Expr DenseSecondTerm(const Expr& quantized_data, const Expr& zp_kernel) {
Array<Integer> axes = {1};
return Multiply(zp_kernel, Sum(Cast(quantized_data, Int(32)), axes, true, false));
}

Expr DenseThirdTerm(const Expr& quantized_kernel, const Expr& zp_data) {
Array<Integer> axes = {1};
return Multiply(zp_data, Sum(Cast(quantized_kernel, Int(32)), axes, false, false));
}

Expr DenseFourthTerm(const QnnDenseAttrs* attrs, int common_dim) {
shoubhik marked this conversation as resolved.
Show resolved Hide resolved
int32_t scalar_term = attrs->input_zero_point * attrs->kernel_zero_point * common_dim;
return MakeConstantScalar(Int(32), scalar_term);
}

/*
* \brief Forward rewrite the qnn dense op.
* \param attrs The QNN dense attrs.
* \param new_args The new mutated args to the call node.
* \param arg_types The data types of input and output.
* \reutrn The sequence of Relay ops for qnn cov2d op.
* \param arg_types The types of input and output.
* \return The sequence of Relay ops for qnn cov2d op.
* \note Lowering of the qnn.dense operator
* A quantized tensor is represented in following manner
* A = scale_a x (QA - zp_A)
* where QA is quantized tensor, scale_a and zp_A are quantization
* params.
*
* Quantized dense multiplies two quantized tensors and returns a
* quantized tensor of default dtype of int32, with scale equaling to the
* product of scales of input tensors, and a zero point of zero.
*
* The lowering for asymmetric quantized dense looks as follows. More details at
* https://discuss.tvm.ai/t/tf-lite-quantized-conv2d-operator-conversion/2651/8
* The computation gets unrolled into following 4 terms
* C(m, n) = Sigma(k) (A(m, k) * W(n, k))
*
* RHS becomes
* Sigma(k) ([QA(m, k) - zp_a] * [QW(n, k) - zp_w])
*
* Unrolling leads to following sequence
* Sigma(k) QA(m, k) * QW(n, k) // Term1
* - Sigma(k) zp_w * QA(m, k) // Term2
* - Sigma(k) zp_a * QW(n, k) // Term3
* - Sigma(k) * zp_a * zp_w // Term4
*
* Term3 and Term4 can be computed at compile time.
*/
Expr QnnDenseCanonicalize(const Attrs& attrs,
const Array<Expr>& new_args,
Expr QnnDenseCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
const Array<tvm::relay::Type>& arg_types) {
CHECK_EQ(new_args.size(), 2);
Expr quantized_data = new_args[0];
Expr quantized_kernel = new_args[1];

const auto in_shape = get_shape(arg_types[0]);
const int reduction_dim_size = get_const_int(in_shape[1]);

const auto* qnn_dense_attrs = attrs.as<QnnDenseAttrs>();
Expr quantized_data_int32 = Cast(quantized_data, Int(32));
if (qnn_dense_attrs->input_zero_point != 0) {
quantized_data_int32 = Subtract(quantized_data_int32,
MakeConstantScalar(Int(32),
qnn_dense_attrs->input_zero_point));
}
Expr quantized_kernel_int32 = Cast(quantized_kernel, Int(32));
if (qnn_dense_attrs->kernel_zero_point != 0) {
quantized_kernel_int32 = Subtract(quantized_kernel_int32,
MakeConstantScalar(Int(32),
qnn_dense_attrs->kernel_zero_point));
auto zp_kernel = MakeConstantScalar(Int(32), qnn_dense_attrs->kernel_zero_point);
auto zp_data = MakeConstantScalar(Int(32), qnn_dense_attrs->input_zero_point);

// Get all the terms as described in the comments.
auto term1 = DenseFirstTerm(quantized_data, quantized_kernel, qnn_dense_attrs);
auto term2 = DenseSecondTerm(quantized_data, zp_kernel);
auto term3 = DenseThirdTerm(quantized_kernel, zp_data);
auto term4 = DenseFourthTerm(qnn_dense_attrs, reduction_dim_size);

// Combine those 4 terms depending on the zero points to get the best lowering.
if (qnn_dense_attrs->input_zero_point == 0 && qnn_dense_attrs->kernel_zero_point == 0) {
// term 2, 3 and 4 become zero.
return term1;
} else if (qnn_dense_attrs->input_zero_point == 0 && qnn_dense_attrs->kernel_zero_point != 0) {
// term 3 and term 4 become zero.
return Subtract(term1, term2);
} else if (qnn_dense_attrs->input_zero_point != 0 && qnn_dense_attrs->kernel_zero_point == 0) {
// term 2 and term 4 become zero.
return Subtract(term1, term3);
} else {
auto data_term = Subtract(term1, term2);
// Putting constant terms together, so that constant folding can fold it.
auto const_term = Subtract(term4, term3);
return Add(data_term, const_term);
}
Expr int32_dense = Dense(quantized_data_int32,
quantized_kernel_int32,
qnn_dense_attrs->units,
qnn_dense_attrs->out_dtype);
return int32_dense;
}

RELAY_REGISTER_OP("qnn.dense")
Expand Down
7 changes: 7 additions & 0 deletions src/relay/qnn/util.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,13 @@ namespace tvm {
namespace relay {
namespace qnn {

static inline Array<IndexExpr> get_shape(const Type& type) {
auto input_tt = type.as<TensorTypeNode>();
CHECK(input_tt != nullptr) << "Type information missing."
<< " Please run infer_type pass.";
return input_tt->shape;
}

static inline const int32_t GetQmin(const DataType& dtype) {
CHECK_LE(dtype.bits(), 32)
<< "QNN ops support int32 or lower precision";
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -193,29 +193,20 @@ def qnn_dense_driver(test_configuration):


def test_qnn_dense_without_bias():
uint32_output_without_bias_paramas = \
make_uint_configuration(use_bias=False)
int32_output_without_bias_params = \
make_int_configuration(use_bias=False)
qnn_dense_driver(uint32_output_without_bias_paramas)
qnn_dense_driver(int32_output_without_bias_params)


def test_qnn_dense_with_bias():
uint32_output_with_bias_params = \
make_uint_configuration(use_bias=True)
int32_output_with_bias_params = \
make_int_configuration(use_bias=True)
qnn_dense_driver(uint32_output_with_bias_params)
qnn_dense_driver(int32_output_with_bias_params)


def test_qnn_dense_with_requantized_output():
uint8_requantized_output_with_bias_params = \
make_uint_configuration(use_bias=True, requantize_output=True)
int8_requantized_output_with_bias_params = \
make_int_configuration(use_bias=True, requantize_output=True)
qnn_dense_driver(uint8_requantized_output_with_bias_params)
qnn_dense_driver(int8_requantized_output_with_bias_params)


Expand Down