Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Frontend][TF] Fix slice when begin or size is not Const #4372

Merged
merged 2 commits into from
Nov 21, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions python/tvm/relay/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -626,8 +626,14 @@ def _impl(inputs, attr, params):

def _slice():
def _impl(inputs, attr, params):
begin = _get_list_param(params, inputs[1])
size = _get_list_param(params, inputs[2])
try:
begin = _get_list_param(params, inputs[1])
except (IndexError, KeyError, AttributeError):
begin = _infer_value(inputs[1], params).asnumpy().tolist()[0]
try:
size = _get_list_param(params, inputs[2])
except (IndexError, KeyError, AttributeError):
size = _infer_value(inputs[2], params).asnumpy().tolist()[0]
data_shape = attr['_input_shapes'][inputs[0]]
data_dim = len(data_shape)
end = size
Expand Down
16 changes: 15 additions & 1 deletion tests/python/frontend/tensorflow/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2188,6 +2188,20 @@ def test_forward_transpose():
_test_forward_tranapose_axes_input((2, 3, 4, 5), (3, 0, 1, 2))


def _test_forward_slice_operation_input(input_value, begin_value, size_value):
input_data = np.array(input_value, dtype=np.float32)
with tf.Graph().as_default():
input_tensor = tf.placeholder(
shape=input_data.shape, dtype=input_data.dtype, name="input")
begin_tensor = tf.expand_dims(begin_value, axis=0)
size_tensor = tf.expand_dims(size_value, axis=0)
slice_tensor = tf.slice(input_tensor, begin_tensor, size_tensor, name='slice_output')
compare_tf_with_tvm([input_data], ['input:0'], 'slice_output:0')


def test_forward_slice():
_test_forward_slice_operation_input([1, 1], 0, 2)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add test cases to cover begin & size as tensor

Copy link
Contributor Author

@lsy643 lsy643 Nov 21, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@yongwww begin and size as tensor are already covered. In the _test_forward_slice_operation_input([1, 1], 0, 2) , the input 0 and input 2 will be changed into tensors after tf.expand_dimes

def _test_forward_slice_operation_input(input_value, begin_value, size_value):
    input_data = np.array(input_value, dtype=np.float32)
    with tf.Graph().as_default():
        input_tensor = tf.placeholder(
            shape=input_data.shape, dtype=input_data.dtype, name="input")
        begin_tensor = tf.expand_dims(begin_value, axis=0)
        size_tensor = tf.expand_dims(size_value, axis=0)
        slice_tensor = tf.slice(input_tensor, begin_tensor, size_tensor, name='slice_output')
        compare_tf_with_tvm([input_data], ['input:0'], 'slice_output:0')


def test_forward_ceil():
ishape = (1, 3, 10, 10)
inp_array = np.random.uniform(size=ishape).astype(np.float32)
Expand Down Expand Up @@ -2760,8 +2774,8 @@ def test_forward_add_n():
# Main
# ----
if __name__ == '__main__':

# Transforms
test_forward_slice()
test_forward_transpose()
test_forward_reshape()
test_forward_depthtospace()
Expand Down